Рю Чжэел

МАЛОГАБАРТИНЫЕ ОПТИЧЕСКИЕ СИСТЕМЫ
ВИРТУАЛЬНЫХ ДИСПЛЕЕВ

Специальность 01.04.05 — Оптика

Диссертация на соискание учёной степени
кандидата физико-математических наук

Научный руководитель:
к.ф.-м.н., Путилин Андрей Николаевич

Москва – 2018
Оглавление

Введение .. 5

Актуальность работы .. 5

Цель диссертационной работы ... 6

Научные задачи: ... 6

Научная новизна .. 7

Практическая значимость работы ... 8

Теоретическая значимость работы ... 8

Методология и методы исследования ... 9

Положения, выносимые на защиту .. 9

Степень достоверности ... 10

Личный вклад автора .. 10

Глава 1. ОБЗОР И АНАЛИЗ ОПТИЧЕСКИХ СИСТЕМ ВИРТУАЛЬНЫХ ДИСПЛЕЕВ 13

1.1 Введение .. 13

1.1.1 Развитие технологий создания дисплеев ... 13

1.1.2 Важные характеристики виртуальных дисплеев ... 16

1.1.3 Основные способы формирования виртуального изображения 17

1.2 Классификация виртуальный дисплеев .. 21

1.3 Волноводная система для передачи виртуального изображения 23

1.4 Растровая оптическая система .. 25

1.5 Сравнение первичных источников информации ... 27

Вывод по главе 1 ... 29
Глава 2. ИССЛЕДОВАНИЕ ОПТИЧЕСКИХ СИСТЕМ ВИРТУАЛЬНЫХ ДИСПЛЕЕВ С УЧЕТОМ ФИЗИЧЕСКИХ ОСОБЕНОСТЕЙ ФОРМИРОВАНИЯ ИЗОБАРЕЖИН ОПТИЧЕСКОЙ СИСТЕМОЙ ГЛАЗА ЧЕЛОВЕКА .. 31

2.1 Пространственное разрешение, поле зрения глаза и учет его вращения 32
2.2 Смещение глаза в вертикальном и горизонтальном направлениях 35
 2.2.1 Зависимость требуемой зоны видения виртуального изображения от поля зрения .. 35
 2.2.2 Влияние поля зрения на оптимальное положение глаза относительно зоны видения виртуального изображения .. 38
2.3 Требование к оптическим системам виртуальных дисплейов 40
Вывод по главе 2 .. 43

Глава 3. ИССЛЕДОВАНИЕ И РАЗРАБОТКА ВОЛНОВОДОВ И ОПТИЧЕСКИХ СИСТЕМ НА ИХ ОСНОВЕ .. 44

3.1 Ограничение поля зрения ... 44
3.2 Волновод неравномерной толщины .. 46
 3.2.1 Актуальность использования волновода неравномерной толщины и принцип работы голографического оптического элемента .. 46
 3.2.2 Оптимизация волновода неравномерной толщины 50
 3.2.3 Исследование дифракционных эффективностей голографических оптических элементов ... 57
 3.2.4 Изготовление волновода неравномерной толщины 62
 3.2.5 Экспериментальное исследование волноводной системой неравномерной толщины .. 65
3.3 Исследование и разработка волноводной оптической системы со ступенчатой микрозеркальной структурой ... 66
3.3.1 Простейшая волноводная система с одной наклонной поверхностью. 66
3.3.2 Волноводная система со ступенчатой микро зеркальной структурой.. 71
3.3.3 Выбор параметров волноводной системы ... 73
3.3.4 Исследование дифракции на ступенчатой микрозеркальной структуре .. 80
3.3.5 Прототипирование виртуального дисплея дополненной реальности со ступенчатой микрозеркальной структуры ... 84
Вывод по главе 3 .. 86

Глава 4. ИССЛЕДОВАНИЕ РАСТРОВЫХ ОПТИЧЕСКИХ СИСТЕМ........ 88

4.1 Схема «один точечный источник – одно зеркало»............................... 89
4.2 Схема «несколько пикселей для одного изображающего зеркала» 93
4.3 Схема «один точечный источник – одно зеркало», размещенная в контактной линзе .. 103

Вывод по главе 4 .. 106

Основные результаты: .. 108

Основные выводы: ... 109

Список литературы... 112
Введение

Актуальность работы

В настоящее время во всем мире активно ведутся работы по созданию и совершенствованию различного вида дисплеев: дисплеи со сверхвысоким разрешением, прозрачные дисплеи, зеркальные дисплеи, 3D-дисплеи с использованием очков, Real 3D и 3D-дисплеи без использования очков, голографические дисплеи, шлемы и очки виртуальной реальности, шлемы и очки дополненной реальности, индикаторы, отображающие информацию на лобовом стекле автомобилей и самолетов и т.п.

Особенно быстро в последнее десятилетие продвигаются исследования систем виртуальных дисплеев (ВД) для использования в шлемах и очках виртуальной и дополненной реальности. В отличие от других технологий такие дисплеи позволяют формировать изображение с размером гораздо большим, чем физические размеры самого виртуального дисплея.

Значительная часть исследований, как в научных организациях и университетах, так и в производственных компаниях, направлена на разработку ВД, которые создают у человека ощущение реального присутствия в виртуальной реальности. Оптическая система таких ВД должна создавать ВИ, при котором человек не чувствует различия между ВИ и реальным миром. Для получения требуемого результата ВД должен обеспечивать высокое пространственное
разрешение [6], большое поле зрения [7], при этом не вызывая у человека дискомфорт из-за большого веса и внешних габаритов устройства [8], и давать максимальный эффект погружения в виртуальный мир.

Однако, согласно принципам построение оптических систем, при фиксированных размерах дисплея и положении глаза наблюдателя с увеличением требуемого поля зрения габаритные размеры оптической системы будут возрастать, соответственно, также будет увеличиваться и вес устройства, а, следовательно, достижение требуемых параметров для такого ВД становится значительно труднее.

Для преодоления этих сложностей используются нестандартные решения построения ВИ, включая волноводные и раstroвые оптические системы. Исследуются и методы переноса ВИ к глазу зрителя, прорабатываются методы синтеза зрачка оптической системы ВД, но во всех вариантах есть физические ограничения, которые нельзя преодолеть. До настоящего момента еще пока не удалось создать такие легкие малогабаритные оптические системы построения ВИ с оптимальными характеристиками зоны видения виртуального изображения (ЗВВИ) и полем зрения, учитывающих физику формирования изображения глазом человека.

Цель диссертационной работы

Основная цель диссертационной работы – разработка малогабаритных внеосевых и растроvых оптических систем виртуальных дисплеев, учитывающих физические особенности оптической системы глаза человека.

Для достижения сформулированной цели в диссертации были поставлены следующие

Научные задачи:

1. Установление связи между ключевыми параметрами (поле зрения, зона видения виртуального изображения (ЗВВИ), положение ЗВВИ) оптической системы ВД и физиологическими особенностями оптической системы глаза человека;
2. Исследование внеосевых оптических элементов для ввода и вывода излучения в оптической системе ВД дополненной реальности, и выполняющих роль бим-комбайнера;

3. Разработка оптических систем ВД дополненной реальности на основе внеосевых волноводных элементов, использование которых приводит к уменьшению габаритов и массы устройства ВД без потери качества получаемых изображений.

4. Определение физических ограничений параметров изображений, формируемых ВД, с учетом физиологических особенностей функционирования оптической системы глаза человека.

Напряженность

1. Для ВД, формирующих мнимое увеличенное изображение в бесконечности, впервые аналитически установлена связь между размером зоны видения виртуального изображения и полем зрения в оптической системе, учитывая неравномерное пространственное разрешения глаза по полю зрения и возможные повороты глаза;

2. В внеосевой системе бим-комбайнера для ВД дополненной реальности, впервые показана возможность использования волновода неравномерной толщиной для передачи изображения, позволяющего уменьшить габариты ВД;

3. Предложен новый тип бим-комбайнера, предназначенного для формирования виртуального изображения, со «ступенчатой микрозеркальной структурой», увеличивающего апертуру выводящего элемента до 2,3 раза;

4. Для ВД, формирующих мнимое увеличенное изображение в бесконечности, определено предельное разрешение растровых оптических систем с учетом дифракционных пределов базовых элементов.
Практическая значимость работы

1. Получена зависимость необходимой величины зоны видения виртуального изображения от поля зрения с учетом физических и физиологических особенностей оптической системы глаза, которые накладывают физические ограничения при разработке ВД, формирующих увеличенное мнимое изображение на фоне реальной окружающей обстановки.

2. Разработана новая конструкция волновода неравномерной толщины, которая позволяет уменьшить продольный размер волноводной системы со стороны глаз до 6,9 раза;

3. Разработан новый тип выводящего элемента «ступенчатая микрозеркальная структура», позволяющий:
 а) увеличить зону видения виртуального изображения при расположении глаза на относительно большом расстоянии от апертуры;
 б) уменьшить толщину волновода до 2,3 раза без ухудшения качества изображения;

4. Определены максимально возможные угловые разрешения для трех моделей растровых оптических систем, позволяющие определить физические ограничения использования растровых схем ВД при формировании широкоапертурных виртуальных изображений:
 а) один точечный источник – одно зеркало: максимальное угловое разрешение – 3 пикселя/°;
 б) несколько пикселей для одного изображающего зеркала: максимальное угловое разрешение – 8 пикселей/°,
 в) один точечный источник – одно зеркало, находящиеся в контактной линзе: максимальное угловое разрешение – 2 пикселя/°.

Теоретическая значимость работы

Исследования позволили определить физические ограничения в работе ВД дополненной реальности. Предложены новые внеосевые оптические системы ВД
дополненной реальности с улучшенными характеристиками.

Методология и методы исследования
1. В диссертации использованы хорошо апробированные методы геометрической и дифракционной оптики в применении к системам, которые ранее не были полностью изучены.
2. Компьютерное моделирование оптических систем с использованием программных комплексов Zemax, VirtualLab и LightTools.

Положения, выносимые на защиту
1. Установлена связь между изменяющимся положением глаза наблюдателя виртуального изображения в зрачке оптической системы дисплея виртуальной реальности с параметрами оптической системы, так, для конкретного случая формирования поля зрения в 24 градуса требуется зона видения виртуального изображения более 5 мм на расстоянии от глаза до границы оптической системы 20 мм, при этом размер апертуры оптической системы должен быть больше, чем 12 мм, что значительно больше случая неподвижного положения глаза;
2. На основе разработанного варианта голографического внеосевого бим-комбайнера, оптимизированы характеристики ВД дополненной реальности, так, ВД дополненной реальности, использующей волновод неравномерной толщины (4,8-0,7мм), позволяет сформировать зону видения виртуального изображения с постоянной по полю яркостью более 13 мм (на расстоянии 19мм от волновода) при вводном пучке диаметром до 6 мм, что невозможно обеспечить в волноводной системе равной толщины;
3. Разработан внеосевой волноводный элемент «ступенчатая микрозеркальная структура» для увеличения апертуры оптической системы, позволяющий увеличить поле зрения, зону видения виртуального изображения и расстояние от апертуры оптической системы до глаза без увеличения толщины волновода.
 Так, для поля зрения 24°, достигнута зона видения виртуального изображения в
9мм (при расстояние от апертуры оптической системы до глаза 19мм) без увеличения толщины волновода, то есть больше в 3,1 раза, чем обеспечивает классическая однозеркальная схема;

4. Определен физический предел углового разрешения зеркально-раствровой системы дисплея виртуальной реальности, в частности, при условии минимального контраста изображения 0,3 физические ограничения разрешения для трех вариантов растровых схем составляют:
 а) один точечный источник — одно зеркало: максимальное угловое разрешение – 3 пикселя/°;
 б) несколько пикселей для одного изображающего зеркала: максимальное угловое разрешение – 8 пикселей/°;
 в) один точечный источник – одно зеркало, расположенные в контактной линзе: максимальное угловое разрешение – 2 пикселя/°.

Степень достоверности

Теоретические расчеты, математическое и компьютерное моделирование и оптимизация проведены с использованием известных программных комплексов MathLab, Mathematica, Zemax, VirtualLab и LightTools. Полученные теоретические расчеты параметров компьютерных моделей хорошо согласовывались с характеристиками изготовленных экспериментальных макетов виртуальных дисплеев.

Личный вклад автора

Автором была предложена идея учета физиологических особенностей глаза человека при расчете параметров оптических систем виртуальных дисплеев. Используя такой подход, автором была аналитически установлена связь между апертурой, величиной зрачка, зоной видения виртуального изображения, положением зоны видения виртуального изображения и другими ключевыми параметрами оптических систем виртуальных дисплеев различного вида. Автор
самостоятельно проводил моделирование оптических схем и оптимизацию моделей для практического изготовления макетных образцов, экспериментально осуществлял тестирование и настройку макетов дисплеев с голографическим и микрозеркальным внеосевыми бим-комбайнераами. Автором были выполнены оценки максимального углового разрешения растровых оптических систем, а также получены оценки физических ограничений на использование оптического раstra на примере предложенных автором схем и по предложенной автором методике. Подготовка основных публикаций для печати, корректировка текста согласно замечаниям рецензентов проводилась автором.

Структура и объем работы

Диссертационная работа состоит из введения, четырёх глав, заключения, списка литературы. Объем диссертации составляет 118 страниц, включая 70 рисунков.

Публикации по результатам диссертационной работы

Статьи:
3. Чжээл Рю, А.Н. Путилин. Исследование виртуальных дисплеев на основе растровых оптических элементов, Квантовая электроника, том 48, № 01, с. 87 - 95 (2018).
Jaeyeol Ryu, A N Putilin, Study of virtual displays based on raster optical elements, Quantum Electronics, 2018, 48 (1), 87-94.
4. Чжээл Рю, Н.В. Муравьев, А.Н. Путилин. Требования к оптическим системам для виртуальных дисплей, Краткие сообщения по физике 2018, 45 (1), 10-16.

Тезисы докладов:
5. Чжээл Рю, А.Н. Путилин, Виртуальные дисплеи: тенденции, оптические системы и проблемы, 60-я Научная конференция МФТИ 2017
Глава 1. ОБЗОР И АНАЛИЗ ОПТИЧЕСКИХ СИСТЕМ ВИРТУАЛЬНЫХ ДИСПЛЕЕВ

1.1 Введение

1.1.1 Развитие технологий создания дисплеев

С появлением кино и созданием телевизоров стало возможным воспроизводить изображения, которые могут одновременно наблюдать большое количество зрителей. Дальнейшее развитием техники и электроники позволило улучшить качество воспроизведения изображения: увеличилось пространственное разрешение, вырос контраст изображения, стала больше глубина передачи цвета, расширился диапазон яркости, стало возможно увеличить частоту повторения кадра и т.п. В последнее десятилетие наиболее ярко эти тенденции проявилась в телевизионной технике, особенно с появлением новых технологий производства телевизионных дисплеев, а также в экранах для планшетов или смартфонов.

Одним из перспективных и активно развивающихся направлений является создание виртуальных дисплеев. Термин "виртуальный" имеет множество значений. Виртуальную реальность или «мир виртуальных объектов» иногда называют искусственной реальностью, электронной реальностью, компьютерной моделью реальности и т.д. Это некоторый искусственно созданный мир. В то же самое время в оптике виртуальное изображение является одним из ключевых и объективных понятий при описании оптических схем. Двойственность профессионального понимания виртуальности часто порождает неправильное представления о быстроразвивающейся области оптических исследований – «Виртуальные дисплеи». В работе идет речь именно об оптических системах, которые стоят мнимое (виртуальное) изображение [9-13].

Человек воспринимает информацию о внешнем мире с помощью различных органов чувств. Сознание обрабатывает информацию, получаемую органами чувств, и строит некоторый образ на ее основе. У человека есть 5 органов чувств, с помощью которых он получает информацию об окружающем его мире: зрение (75%), слух (13%), осязание (6%), обоняние (3%), вкус (3%) [14]. Наибольший
объем информации (около 88 %) человек получает с помощью зрения и слуха. Эту информацию частично можно передавать с использованием обычных дисплеев. С развитием технологии, обычные 2D дисплеи перестали удовлетворять все запросы зрителей. 3D дисплеи, особенно голографические или с динамической генерацией ракурсов [15], во многом позволяют решить эту проблему.

В последнее время появилось много новых типов носимых электронных устройств, в которых используются дисплеи. Анализируя эволюцию развития компактных электронных устройств дисплейных систем, можно выделить две тенденции:

1) размер устройства неуклонно уменьшается;
2) соотношение площади дисплея к размеру самого устройства увеличивается.

На рисунке 1.1 (а) показана динамика изменения габаритных размеров электронных устройств, начиная с персонального компьютера и заканчивая смартфоном. Тенденция уменьшения размера и массы электронного устройства связано еще и с желанием создать доступное удобное компактное многофункциональное устройство, которое всегда есть под рукой. Во многом создание таких устройств стало возможным благодаря появлению компактных экранов с высокой яркостью и контрастом при относительно небольшом энергопотреблении. Это привело к тому, что в настоящее время самым распространённым электронным устройством является смартфон. В многих развитых странах процент пользователей смартфонами в стране достигает выше 70 процентов: Республика Корея (88%), Австрия (77%), Израиль (74%), США (72%) и Испания (71%) [16].

Если смотреть динамку развития по времени компактных электронных устройств, от носимого телефона до смартфона, то соотношение площади дисплея к площади устройства K постоянно увеличивается (см. рисунок 1.1 (б)).

$$K = \frac{S_{дисплей}}{S_{устройство}}, \quad (1.1)$$

где $S_{дисплей}$ — площадь дисплея, $S_{устройство}$ — площадь устройства.
Очевидно, что физически дисплей не может быть больше, чем устройство. Следовательно, и изображение не может быть больше, чем устройство. Но если устройство или дисплей создают виртуальное (мнимое) изображение, то возможно выйти из этого физического ограничения, то есть \(K > 1 \). Причем параметр \(K \) зависит от расположения глаза относительно оптической системы, формирующей виртуальное изображение, где \(L_d' \) – расстояние между глазом наблюдателя и положением виртуального изображения, а \(d_d' \) – размера виртуального изображения. Если предположить, что такое устройство будет иметь размер 150×50 мм такой же, как у обычных или солнцезащитных очков, то можно провести предварительный анализ динамики увеличения коэффициента \(K \) в зависимости от поля зрения (см. рисунок 1.2).

Поле зрения = \(2 \cdot \arctan \left(\frac{d_d' \cdot L_d'}{2L_d} \right) \)

(1.2)
Рисунок 1.2. Изменение параметра \(K \) в зависимости от поля зрения (FoV) и положения виртуального изображения относительно зрителя на расстоянии \(L=1 \text{м}, 2 \text{м}, 3 \text{м} \) оптической системы с внешними размерами по ширине и высоте 150 x 50 мм и соотношением сторон виртуального дисплея 16:9

Если виртуальный дисплей (ВД) сможет построить изображения с угловым размером 20°, то размер виртуального изображения может быть больше, чем само устройство в \(K=7, K=28 \) и \(K=63 \) раза, соответственно, для положений виртуальных изображений \(L_d'=1 \text{м}, L_d'=2 \text{м}, L_d'=3 \text{м} \).

По тенденции уменьшения габаритов электронных устройств и увеличения отношения размеров дисплея к размерам устройства можно прогнозировать, что виртуальный дисплей станет следующим типом наиболее распространенных электронных устройств.

1.1.2 Важные характеристики виртуальных дисплеев

При исследовании и разработке ВД особое внимание прикладывалось к следующим наиболее важным характеристикам оптической системы ВД:

i) Угловое поле зрения [°] – угловой размер виртуального изображения (ВИ) (1.2). Этот параметр непосредственно влияет на качество ВД, а, следовательно, и на создание ощущения нахождения в виртуальном мире для зрителя. Зритель будет ощущать эффект присутствия тогда, когда будет видеть виртуальный мир в таком же масштабе, как и реальный мир, т.е. когда угловые размеры ВИ сопоставимы с реальными объектами, которые видит глаз человека в реальном мире;

ii) Угловое разрешение [°] – минимальный угол между объектами в ВИ, который способна отобразить оптическая система. Известно, что глаз человека способен различать до одной угловой минуты. Соответственно, чтобы человек чувствовал естественность виртуального изображения, угловое разрешение должно быть не хуже одной угловой минуты 1′;
iii) Зоны видения виртуального изображения (ЗВВИ, область, где можно видеть виртуальное изображение с требуемым качеством, англоязычный аналог Eye Box) [мм] или [мм×мм] – поперечный размер или площадь области, где можно видеть полное поле зрения с требуемым качеством изображения;

iv) Положение ЗВВИ (англоязычный аналог Eye relief) [мм] – расстояние от последней поверхности оптической системы до ЗВВИ. Из-за физиологических особенностей глаза рекомендуется, чтобы глаз находился более 10мм от препятствия, в нашем случае, от последней поверхности оптической системы;

v) Габариты [мм×мм×мм] и вес [г] – важные характеристики, которые будут влиять на удобство и комфорт при длительной эксплуатации. С учетом того, что ВД одевается на голову зрителя, большие вес и габариты устройства могут оказывать серьезную нагрузку на голову, мышцы шеи и позвоночник, что будет приводить к быстрому утомлению зрителя [18].

Эти ключевые параметры будут зависеть от назначения или специализации устройства ВД. Но для того, чтобы ВИ казалось зрителю максимально правдоподобным, необходимо добиться значений ключевых параметров максимально близких к значениям, при которых зрител видит реальный мир без ВД. Т.е. система должна формировать ВИ с большим углом зрения, с угловым разрешением, сравнимым с угловым разрешением глаза человека, с большой ЗВВИ такой, чтобы при вращении глаза свет попадал в глаз, при этом это ВД должен иметь малые габариты и вес, чтобы зритель не чувствовал дополнительного дискомфорта.

1.1.3 Основные способы формирования виртуального изображения

В оптике увеличенное изображение формируется положительным объективом, когда предмет расположен от системы ближе фокуса. Но в подавляющем большинстве оптических систем для ВД сам дисплей ставят в фокусе оптической системы, чтобы формировать ВИ в бесконечности. Это связано с физиологическими особенностями зрительной системы человека. Наиболее расслабленное состояние аккомодационных мышц глаза достигается тогда, когда
глаз аккомодирован на бесконечность. При этом задний фокус глаза совпадает с сетчаткой [19].

На практике используют два типа оптических систем для формирования ВИ: оптическая система без переноса изображения (см. рисунок 1.3) и оптическая система с переносом первичного действительного изображения (см. рисунок 1.4).

Оптическая система без переноса изображения – это случай, когда дисплей находится в фокусе положительного объектива.

Можно записать выражение для следующих параметров для идеально тонкой оптической системы: поле зрения, положение ЗВВИ и ЗВВИ.

Поле зрения:

\[
\text{Поле зрения} = 2 \cdot \arctan \left(\frac{d_d}{2f_o} \right), \quad (1.3)
\]

где \(f_o \) – фокусное расстояние объектива, \(D_d \) – размер дисплея.

Максимальное расстояние от объектива до ЗВВИ в зависимости от диаметра объектива \(D_o \):

\[
L_{e, \text{мак}} = \frac{D_o}{2 \tan \left(\frac{\text{Поле зрения}}{2} \right)}, \quad (1.4)
\]

где \(D_o \) – диаметр выходной апертуры объектива.

Зависимость ЗВВИ от положения глаза \(L_e \) и поля зрения:

\[
\text{ЗВВИ} = 2 \left(L_{e, \text{мак}} - L_e \right) \cdot \tan \left(\frac{\text{Поле зрения}}{2} \right) \quad (1.5)
\]
Рисунок 1.3. Формирующая увеличенное мнимое изображение оптическая система без переноса изображения, в подкрашенной области можно получить полное поле зрения.

Оптическая система с переносом изображения – это система, которая состоит из двух оптических компонентов объектива. Оба оптических компонента представляют собой положительную оптическую систему. Дисплей находится дальше, чем фокусное расстояние первого компонента. В результате чего, строится действительное изображение. (увеличенное действительное изображение, если \(f_1 \leq L_{1д} \leq 2f_1 \); уменьшенное действительное изображение, если \(f_1 \leq L_{1д} \leq 2f_1 \).) Фокус второго компонента совпадает с дисплеем, таким образом, второй компонент строит увеличенное мнимое изображение в бесконечности.

Можно записать выражение для следующих параметров идеально тонкой оптической системы: поле зрения, положение ЗВВИ и ЗВВИ.

Положение промежуточного действительного изображения из формулы Гаусса:

\[
L_{1д}' = \frac{L_{1д}f_1'}{L_{1д}+f_1'},
\]

где \(f_1' \) – задний фокус первого компонента, \(L_{1д} \) – расстояние от дисплея до первого компонента.
Размер промежуточного действительного изображения:

\[D'_d = \frac{D_d \cdot f_1'}{L_1 + f_1'} \] \hspace{1cm} (1.7)

где \(D_d \) – размер дисплея.

Рисунок 1.4. Формирующая увеличенное мнимое изображение оптическая система с переносом изображения, в подкрашенной области можно получить полное поле зрения

Не всегда для реализации дисплея с требуемой конструкцией и специализацией можно подобрать дисплей, имеющийся на рынке. Во-первых, микродисплеи имеют определенный размер, подавляющее большинство микродисплеев имеет размер меньше, чем 1 дюйма. Во-вторых, габариты устройства и поле зрения, формируемое объективом, на прямую связаны с фокусным расстоянием объектива, так как дисплей находится в фокусе.

При фиксированном поле зрения фокусное расстояние объектива
пропорционально размеру дисплея. При уменьшении размера дисплея необходимо использовать объектив с меньшим фокусным расстоянием. При формировании большой ЗВВИ относительное отверстие объектива должно увеличиваться, так как ЗВВИ пропорционально размеру зрачка объектива. Соответственно, сложность оптической системы возрастает, что приводит к увеличению количества оптических элементов и весу устройства. Чтобы избежать такой ситуации, можно использовать оптическую систему с переносом изображения, в которой увеличен размер объекта для второго компонента оптической системы, соответственно, требование к относительному отверстию объектива уменьшается. Оптическая система с переносом изображения с учетом своих преимуществ, включая высокое разрешение и малые габариты, подходит при выборе микродисплея малого размера (LCoS) и избавляет от необходимости использования сложных оптических систем.

Однако реальная оптическая система обладает большим уровнем аберраций, что, в отличие от идеальной тонкой оптической системы, усложняет реализацию требуемых больших ЗВВИ и положения ЗВВИ с приемлемым качеством ВИ. Задача выбора значения целевых параметров оптических систем для ВД (поле зрения, положение ЗВВИ, размер ЗВВИ) формулируется на основе множества факторов: эргономического, экономического, габаритов, веса и т.п.

1.2 Классификация виртуальный дисплеев

Классификация виртуальных дисплеев может быть проведена по степени прозрачности дисплеев. Если устройство не прозрачно, то есть глаз может видеть только виртуальное изображение, то такое устройство называется устройством виртуальной реальности. Если устройство является частично прозрачным, что позволяет глазу видеть одновременно и реальный мир, и виртуальное изображение, то такое устройство называется дисплеем дополненной реальности.

На рисунке 1.5 представлены оптические схемы самых популярных на рынке моделей устройств виртуальной и дополненной реальностей.

Оптическая система виртуальной реальности «Gear VR» представляет собой
оптическую систему без переноса изображения. Перед дисплеем находится одиночная линза, которая строит ВИ дисплея с полем зрения около 90 градусов, что позволяет достаточно просто построить ВИ с большим полем.

В отличие от оптической системы виртуальной реальности, для оптической системы дополненной реальности нужна более сложная оптическая схема для возможности наблюдения также и реального мира. Устройство дополненной реальности «Hololens» представляет собой оптическую систему без переноса изображения, но между глазом и объективом находятся три волновода в виде параллелепипеда для красного, зеленого и синего цветов. В каждой волноводной структуре используются три дифракционных оптических элемента (ДОЭ). Волновод применяется для передачи ВИ от объектива к глазу наблюдателя, используя свойство полного внутреннего отражения. В силу формы волновода (параллелепипед) излучение из внешней среды не искажается при передаче через волновод к глазу. Поэтому оптическая система с волноводом является прозрачной и неискажающей для проходящих лучей.

(а) (б)

Рисунок 1.5. Классификация ВД по прозрачности устройства: (а) устройство виртуальной реальности Samsung GearVR – дисплей в фокусе однолинзовой системы;
(б) устройство дополненной реальности Microsoft Hololens – передача изображения через волновод с использованием трех ДОЭ для: i) ввода излучения в
волновод; ii) разложения пучков по оси х; iii) разложения пучков по оси у и вывода из волновода одновременно [20-21].

Формирование ВИ перед глазом для виртуальной реальности – довольно простая задача. Для того, чтобы глаз видел реальный мир сквозь оптическую систему в случае дополненной реальности, необходима более сложная схема совмещения реального мира и виртуального изображения с использованием устройства совмещения – Бим-комбайнера (анг. Beams combiner) [22-24].

1.3 Волноводная система для передачи виртуального изображения

Самым распространенным волноводным элементом для передачи изображения является световодная плоскопараллельная стеклянная пластина. И...
В качестве вводного и выводного элементов используются следующие 4 варианта (см. рисунок 1.7): одна наклонная полупрозрачная поверхность (см. рисунок 1.7 (а)) [25]; голографический оптический элемент (ГОЭ) (см. рисунок 1.7 (б)) [26-32] и дифракционный оптический элемент (ДОЭ - дифракционная решетка) (см. рисунок 1.7 (в)) [33-39]; набор полупрозрачных зеркал (см. рисунок 1.7 (г)) [40-45].

<table>
<thead>
<tr>
<th>Типы вводящего и выводящего элементов</th>
<th>Картинки</th>
</tr>
</thead>
<tbody>
<tr>
<td>(а) Одна наклонная поверхность</td>
<td></td>
</tr>
<tr>
<td>(б) Голографический оптический элемент (ГОЭ)</td>
<td></td>
</tr>
<tr>
<td>(в) Дифракционный оптический элемент (ДОЭ)</td>
<td></td>
</tr>
<tr>
<td>(г) Набор полупрозрачных зеркал</td>
<td></td>
</tr>
</tbody>
</table>

Рисунок 1.7. Типы вводящего и выводящего элементов

Вариант (а) одна наклонная поверхность имеет существенный недостаток: чем больше поле зрения и ЗВВИ, и чем дальше положение ЗВВИ, тем больше будет толщина волновода.

Элементы в вариантах (б) ГОЭ и (в) ДОЭ (дифракционная решетка) вызывают хроматические аберрации [46-47], что создает дополнительные сложности при получении цветного ВИ.

Вариант с набором полупрозрачных зеркал (г) обеспечивает большое поле
зрения с цветным изображением, однако требует высокого технологического уровня изготовления нескольких строго параллельных наклонных зеркал с переменными коэффициентами пропускания, что необходимо для обеспечения ВИ с равномерным распределением освещения по полю.

Все описанные выше варианты, за исключением варианта с наклонной поверхностью (см. рисунок 1.7 (а)), позволяют расширить размеры вводящего и выводящего элементов, которые напрямую влияют на параметры ВД: поле зрения, ЗВВИ и положение ЗВВИ (будет рассмотрено подробно в Глава 3).

1.4 Растровая оптическая система

Применение растровой оптики для уменьшения продольных габаритов устройства широко применяется в оптических системах микроскопов, объективов фото- и видеокамер, навигационных устройств и ВД (см. рисунок 1.8). [48-51]
Рисунок 1.8. Растровая система: (а) матрица сферических линз с коротким фокусом на плоской подложке перед дисплеем [52], (б) плоские цветные голограммы, записанные матрицей линз. Принципы записи голограммы (i) и восстановления (ii) для плоской цветной голограммы [53], (в) растровая голограмма на неплоской поверхности (записанная матрицей линз) с контактной линзой. Схематические иллюстрации (i) отражательной голографической установки, используемой для записи полу-отражающего голографического экрана, и (ii) восстановления голограммы [54], и (г) схема с набором отверстий, работающая по принципу камеры-обскура с отслеживанием положения глаза. Мaska апертуры расположена перед формируемым изображением на плоскости модуляции, чтобы создать виртуальную гексагональную апертуру перед глазом. Микродисплей излучает свет в широкий угол, но в зрачок приходит свет только от очень маленькой апертуры – то есть практически тенеграмма [55].

Как ранее отмечено, габариты и вес являются ключевыми параметрами для ВД. По этой причине применение растровой оптики для построения виртуального изображения, использованное в патенте [56], является хорошим подходом к минимизации габаритов устройств ВД. Согласно принципам построение оптических систем, при фиксированном размере дисплея и положении глаза
наблюдателя габаритные размеры оптической системы будут возрастать с увеличением требуемого поля зрения. Таким образом, применение растровых систем позволит уменьшить продольные габариты ВД.

В ряде работ предложены следующие типы растровых схем: (а) матрица сферических линз с коротким фокусом на плоской подложке перед дисплеем [52], (б) плоские цветные голограммы, записанные матрицей линз [53], (в) растровая голограмма на неплоской поверхности (записанная матрицей линз) с контактной линзой [54] и (г) схема с набором отверстий, работающая по принципу камеры-обскура [55]. В этих работах показаны положительные результаты построения непрерывного виртуального изображения с большим полем зрения и маленькими габаритами оптической системы. В качестве базовых элементов в этих системах использовались матрицы зеркал, линз, отверстий или микроголограмм линзовых растворов.

К сожалению, ни в одной работе не проведены оценки предельного разрешения, которое можно обеспечить в подобных системах, а также не описано ограничение размера ЗВВИ.

1.5 Сравнение первичных источников информации

Первичным источником являются либо самосветящийся источник излучения, либо пространственно-временной модулятор света (ПВМС), который передает информацию путем модуляции излучения, подающего на его.

На практике, для систем ВД в качестве самосветящегося источника излучения используют матрицу источников излучения (OLED, LED). Самым большим преимуществом такого типа источника является возможностью воспроизведения информации с высоким контрастом.

В качестве ПВМС могут использоваться микродисплей типа LCoS и LCD. Для системы ВД, LCD не используются из-за ограничения контраста и сложности производства таких дисплеев с высокой плотностью пикселя.

В качестве источника излучения также можно использовать либо лазерный
диод, либо волоконный лазер. Однако на практике из-за риска повреждения глаза лазерным излучением, чаще всего используют светодиод.

Рассмотрим сравнение трех микро дисплеев: LCoS, OLED и LED (см. рисунок 1.9).

Здесь под словом «микро» подразумевается, что размер дисплея по диагонали меньше одного дюйма (25.4 мм). У каждого дисплея имеются свои преимущества и недостатки.

Дисплей OLED состоит из излучающих пикселей, представляющих собой полупроводники на основе органических соединений. Для OLED для генерации высокой яркости пикселя требуется относительно низкая потребляемая мощность. Яркостью пикселя можно управлять током. Высокая яркость пикселя в такой системе резко сокращает срок службы, по этой причине для увеличения срока службы, как правило, и ограничивают яркость. Так как есть возможность управления яркостью каждого пикселя не зависимо друг от друга, то можно получать изображения с высоким контрастом.

С момента появления технологии в 2000г. микро LED развивается очень активно [57] благодаря своим преимуществам: высокой энергоэффективности и высокой яркости. На данный момент существует сложности с увеличением плотности пикселей из-за высокого процента брака при транскрипции. В микро LED так же как и у OLED каждый пиксель излучает сам, за счет чего можно добиваться высокого контраста.

Дисплей LCoS впервые был представлен в 1970 годах [58]. С развитием полупроводниковых технологий в последнее десятилетие многие компании смогли разработать и изготовить такие дисплеи. Он работает на отражении, то есть на дисплей падает поляризованный свет, сформированный осветительной системой, и при отражении свет модулируется, а после отражения состояние поляризации меняется на ортогональную. Яркость дисплея зависит от яркости осветительной системы, что позволяет формировать относительно яркое изображение, но имеет средний уровень контраста из-за неидеальности фазовых элементов в дисплее. Так
Как LCoS дисплей работает на отражение с использованием поляризационного света, то необходимо создавать осветительную систему с поляризационным светоделительным элементом, что делает габариты такой дисплейной системы больше по сравнению с LED и OLED, которые не требуют осветительной системы.

<table>
<thead>
<tr>
<th>Технология микродисплея</th>
<th>LCoS</th>
<th>OLED</th>
<th>LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Потребляемая мощность</td>
<td>●●●</td>
<td>●●○</td>
<td>●●●</td>
</tr>
<tr>
<td>Технологическая зрелость</td>
<td>●●●</td>
<td>●●○</td>
<td>●○○</td>
</tr>
<tr>
<td>Простота изготовления — масштабируемость (возможность высокого количества пикселей)</td>
<td>●●●</td>
<td>●●○</td>
<td>●○○</td>
</tr>
<tr>
<td>Яркость</td>
<td>●●○</td>
<td>●○○</td>
<td>●●●</td>
</tr>
<tr>
<td>Контраст</td>
<td>●●○</td>
<td>●●●</td>
<td>●●●</td>
</tr>
</tbody>
</table>

Рисунок 1.9. Сравнение различных типов микро дисплеев (●●●-лучше, ●○○-хуже)

[59]

В большинстве исследований волноводных оптических систем выбран дисплей типа LCoS из-за большего количества пикселей и сравнительно высокой яркости. [25, 32, 39-40]

Вывод по главе 1

Аналитический обзор принципов формирования ВИ и оптических систем для БД показал, что:
1. Виртуальные дисплеи являются перспективными оптико-электронным устройствами, которые позволяют выйти за ограничения размера воспроизводимого изображения для зрителя физическим размером дисплея и формировать изображения гораздо большего размера, чем размер оптической системы ВД дисплея.

2. Большинство проанализированных разработок оптических систем для ВД не работоспособно из-за несогласования поля зрения с требуемым размером ЗВВИ и положением ЗВВИ.

3. Волноводная оптическая система является одним из наиболее перспективных направлений исследований для разработки малогабаритных оптических систем для ВД.

4. Не исследована оценка максимального разрешения в растровых оптических системах.

Для волноводной оптической системы LCoS используют благодаря большому количеству пикселей и относительно большой яркости.
Глава 2. ИССЛЕДОВАНИЕ ОПТИЧЕСКИХ СИСТЕМ ВИРТУАЛЬНЫХ ДИСПЛЕЕВ С УЧЕТОМ ФИЗИЧЕСКИХ ОСОБЕННОСТЕЙ ФОРМИРОВАНИЯ ИЗОБАРЕЖИНИЯ ОПТИЧЕСКОЙ СИСТЕМОЙ ГЛАЗА ЧЕЛОВЕКА

В настоящее время разработано и реализовано много типов виртуальных дисплееев, при этом каждый год появляются новые схемы и технологические решения. К сожалению, подавляющее большинство из них не получает успешной практической и коммерческой реализации из-за несоответствия ряду ключевых факторов, связанных с физическими особенностями работы глаза человека. Основная ошибка связана с тем, что глаз оценивается разработчиками как пассивный статический элемент.

В исследованиях, связанных с ВД, необходимо учитывать то, что глаз наблюдателя не является пассивным элементом, и движения глаза должны быть включены в исследуемую оптическую схему. В литературе в большинстве работ предложены и исследуются оптические схемы ВД без учета, по нашему мнению, ключевых факторов – физических и физиологических особенностей. В результате, предложенные в этих работах решения оказываются неработоспособными [60-70], хотя по некоторым параметрам в них получен хороший результат: большое поле зрения и ЗВВИ, большое расстояние от ВД до глаза, малые габариты и так далее. Все перечисленные параметры тесно связаны как между собой, так и с физиологическими особенностями человеческого глаза, что при проектировании и расчетах обязательно должно учитываться.

Конечная цель разработки ВД – это создать устройство, способное сформировать у человека ощущение нахождения в реальном мире, то есть оптическая система ВД должна создавать такое виртуальное изображение, при котором человек не чувствует различия между реальным изображением и виртуальным. «Обмануть» глаза и мозг можно, только формируя перед глазом виртуальное изображение, похожее на реальное.

В данной работе требования к оптической системе ВД определяются с
учетом физических и физиологических особенностей глаза человека: возможности
и диапазона движения глаза, поля зрения и углового (а также и пространственное)
разрешения глаза.

2.1 Пространственное разрешение, поле зрения глаза и учет его вращения

Требования к полю зрения и разрешению ВД должны быть обоснованы,
исходя из области его применения, например: игровые приложения, дизайн одежды,
3D-моделирование, виртуальный кинотеатр, моделирование внутреннего
интерьера помещений и внешнего ландшафта, обучение (спорт, вождение
транспортных средств и т.д.), экспериментальная наука, чтение книг, рабочий
монитор, видео и текстовые коммуникаторы, навигация, все эти разные области
применения потребуют и разных ВД.

На рисунке 2.1 представлены в виде графика и таблицы ряд возможных
применений ВД и соответствующие им параметры поля зрения и разрешения. Поле
зрения и разрешение разделены на 3 группы:

- Поле зрения – малое (меньше 30°), среднее (30-60°), большое (больше
 60°)

- Разрешение – низкое (ниже 15 пикселей/°), среднее (15-20 пикселей/°) и
 высокое (выше 20 пикселей/°)

Согласно рисунку 2.1 для большинства областей применения может
использоваться ВД со средним полем зрения и средним разрешением, за
исключением моделирования внутреннего интерьера помещений, где требуется
большое поле зрения, и игровых приложений, где необходимы как большее поле
зрения, так и высокое разрешение.
Рисунок 2.1. Область применения, требуемые поле зрения и разрешение для соответствующего применения

Разрешение глаза человека достигает максимального значения в 60 пикселей на градус только в центральной области (области центральной ямки – Fovea), которая совпадает с оптической осью глаза, вне этой области разрешение резко падает. Известно, что существуют два вида фоторецепторов: колбочки (cones) и палочки (rods). На рисунке 2.2 (а) показано распределение фоторецепторов: колбочек и палочек. Как известно, колбочки, отвечающие за распознавание цветов с относительно невысокой реакцией, находятся в центральной области сетчатки глаза с наибольшей плотностью. При удалении от центра плотность колбочек падает и их участие в формировании периферийного зрения снижается. Палочки, отвечающие за прием черно-белого изображения, обладают быстрой реакцией и находятся примерно в поле зрения 20 градусов.

Как видно на рисунке 2.2 (б), глаз человека имеет наибольшее разрешение в центральной части поля зрения, которое начинает падать при смещении к периферийной части. Такую характеристику глаза можно объяснить двумя факторами:

- Наибольшая плотность фоторецепторов, находится в центре сетчатки глаза
- В силу построения оптической системы глаза, как осесимметричной оптической системы, наибольшее разрешение обеспечивается на оптической оси,
то есть в центральном поле зрения. Другими словами, из-за не идеальности оптической системы глаза, глаз не способен формировать резкое изображение в большом поле на сетчатке.

Рисунок 2.2. Физиология глаза человека: (а) график распределения фоторецепторов по полю зрения [71], (б) график относительной величины разрешения по полю зрения [72], и (в) Мышцы глазницы, вид сбоку: 1 — фиброзное кольцо Зинна; 2 — верхняя прямая; 3 — нижняя прямая; 4 — внутренняя прямая; 5 — наружная прямая; 6 — верхняя косая; 7 — блок; 8 — нижняя косая; 9 — поднимающая верхнее веко; 10 — верхнее веко; 11 — глазное яблоко; 12 — зрительный нерв [73]

В связи с этими двумя факторами, человек способен видеть наиболее резкое изображение с высоким разрешением в центральном поле, и вне этой области разрешение и резкость изображения начинают плавно падать.

По этим причинам, когда человек хочет рассмотреть объект в подробностях, глаз рефлекторно поворачивается с помощью глазодвигательных мышц, так, чтобы объект находился как можно ближе к оптической оси глаза. Для понижения напряженности глазодвигательных мышц голова тоже будет поворачиваться к тому же объекту (см. рисунок 2.2 (в)). По этой причине оптическая система ВД должна обеспечить большую ЗВВИ, где можно видеть виртуальное изображение в определенном угле с требуемым качеством, чтобы дать зрителю непрерывное
виртуальное изображение. Если ЗВВИ мала, то при повороте глаза зритель перестанет видеть виртуальное изображение.

Из этого можно сделать вывод, что ВД должен обеспечить определенный размер ЗВВИ в зависимости от поля зрения виртуального изображения. Важно отметить, что чем больше поле зрения у системы ВД, тем больше ЗВВИ требуется. Этот вопрос будет подробно рассмотрен в следующих подразделах.

2.2 Смещение глаза в вертикальном и горизонтальном направлениях

2.2.1 Зависимость требуемой зоны видения виртуального изображения от поля зрения

Обычно оптическая система ВД проектируется так, чтобы ЗВВИ находилась в зрачке глаза наблюдателя. Когда человек хочет видеть объект, находящийся на угловом расстояние α от центра поля зрения, глаз поворачивается на угол α, соответственно зрачок глаза перемещается относительно номинального положения ЗВВИ. Это перемещение зависит от угла поворота глаза α и радиуса стекловидного тела R (см. рисунок 2.3).

В первом приближении, можно сделать следующие допущения для модели глаза [73]:

- Центр вращения глаза находится в центре стекловидного тела, а радиус стекловидного тела можно положить 12 мм (среднее статистическое значение);
- Зрачок находится на поверхности стекловидного тела. Размер зрачка меняется в диапазоне от 3 до 8 мм.
Параметр ЗВВИ определяет только область поля зрения оптической системы, в которой формируется изображение с требуемым качеством, а не равномерность яркости виртуального изображения по полю зрения. В связи с этим предложены три типа ЗВВИ: ЗВВИₙом, ЗВВИₘин и ЗВВИₘак, каждая из которых, характеризует равномерность распределения яркости по полю при восприятии глазом. Номинальная ЗВВИₙом определяется диапазоном смещения оптической оси глаза при его вращении, ЗВВИₘин – внутренних краев зрачка глаза и ЗВВИₘак – наружных краев зрачка глаза как отмечено на рисунке 2.3.

Для обеспечения равномерности яркости виртуального изображения по полю, необходимо, чтобы ЗВВИ была ЗВВИₘак. Но для некоторых применений достаточно, чтобы глаз видел изображение даже с некоторой неравномерностью яркости изображения по полю. ЗВВИₙом дает приближительную величину ЗВВИ, когда самое крайнее поле видно с половиной яркости относительно нулевого поля. А ЗВВИₘин представляет собой величину ЗВВИ, когда самое крайнее поле видно, с яркостью, близкой к нулю. ЗВВИₘин полезна тогда, когда наблюдателю достаточно дать виртуальное изображение с определённым полем зрения, а равномерность не играет важной роли.
Выражения для ЗВВИ имеют следующий вид, а их графики представлены на рисунке 2.4:

\[
\text{ЗВВИ}_{\text{мин}} = \begin{cases}
0, & \text{если } 2R \cdot \sin(\alpha) < D_{\text{зрачок}} \cdot \cos(\alpha) \\
2R \cdot \sin(\alpha) - D_{\text{зрачок}} \cdot \cos(\alpha), & \text{в остальных случаях}
\end{cases}
\]

(2.1)

\[
\text{ЗВВИ}_{\text{ном}} = 2R \cdot \sin(\alpha)
\]

(2.2)

\[
\text{ЗВВИ}_{\text{мак}} = 2R \cdot \sin(\alpha) + D_{\text{зрачок}} \cdot \cos(\alpha)
\]

(2.3)

Рисунок 2.4. График требуемой ЗВВИ в зависимости от диаметра зрачка \(D_{\text{зрачок}} \) и угла поворота глаза \(\alpha \). (а) - ЗВВИ_{мин}; (б) - ЗВВИ_{ном}; (в) - ЗВВИ_{мак}.

Для систем, в которых важно формирование самого ВИ и не требуется равномерности распределения яркости по ВИ, проведем оценку ЗВВИ_{мин}. Как видно на рисунке 2.4, необходимо увеличивать ЗВВИ_{мин} при расширении диапазона углов поворотов глаза \(\alpha \) (поле зрения), при этом также требуется увеличение ЗВВИ_{мин} и при уменьшении диаметра зрачка \(D_{\text{зрачок}} \). Но, следует отметить, что максимальный размер требуемой ЗВВИ_{мин} будет существенно меньше, чем в остальных случаях, обсуждаемых ниже.

В системах, которые хорошо описываются с использованием ЗВВИ_{ном}, необходимо учитывать только возможные границы углов поворота глаза \(\alpha \) (поле зрения). Чем больше диапазон поворота глаза \(\alpha \), тем больше ЗВВИ_{ном} требуется, при этом она не зависит от диаметра зрачка \(D_{\text{зрачок}} \).

В задачах, где необходимо использовать ЗВВИ_{мак}, требуется учитывать и
диапазон возможных углов поворотов глаза α (поле зрения), и диаметр зрачка $D_{\text{зрачок}}$. При увеличении этих параметров будет увеличиваться и необходимое ЗВВИмак, достигая максимального значения по сравнению с двумя остальными случаями, описанными выше.

2.2.2 Влияние поля зрения на оптимальное положение глаза относительно зоны видения виртуального изображения

Ниже проведено исследование нахождения оптимального положения глаза относительно ЗВВИ, которая находится на расстоянии $L_{\text{глаз}}$ от ВД. На рисунке 2.5 представлены три случая положения глаза относительно ВД, когда (a): $\Delta L_{\text{глаз}}>0$, (b): $\Delta L_{\text{глаз}}=0$, (в): $\Delta L_{\text{глаз}}<0$.

Обозначим оптимальное положение глаза $L_{\text{опт.глаз}}$ так:

Рисунок 2.5. Три случая расположения глаза относительно плоскости ЗВВИ

Важно отметить, что при повороте глаза, положение его зрачка перемещается вдоль оптической ости ВД Y. Причем Y зависит от поля зрения ВД и размера зрачка глаза. Это смещение отмечено как $Y_{\text{мин}}$, $Y_{\text{нор}}$, $Y_{\text{мак}}$, соответственно, для ЗВВИмин, ЗВВИном и ЗВВИмак на рисунке 2.3. Оптимальным положением глаза является (в) $\Delta L_{\text{глаз}}<0$, и может быть определено как:
\[\Delta L_{глаз} = Y \]
(2.4)

то есть, другими словами, установить глаз ближе к ДВ на \(Y \) относительно от ЗВВИ \(L_{глаз} \).

Рассмотрим смещение глаза в вертикальной плоскости \(Y_{мин}, Y_{нор}, Y_{мак} \):

\[
Y_{мин} = \begin{cases}
0, & \text{если } R[1 - \cos(\alpha)] < \frac{1}{2} D_{зрачок} \cdot \sin(\alpha) \\
R[1 - \cos(\alpha)] - \frac{1}{2} D_{зрачок} \cdot \sin(\alpha), & \text{в остальных случаях}
\end{cases}
\]
(2.5)

\[
Y_{ном} = R[1 - \cos(\alpha)]
\]
(2.6)

\[
Y_{мак} = R[1 - \cos(\alpha)] + \frac{1}{2} D_{зрачок} \cdot \sin(\alpha)
\]
(2.7)

Графики \(Y_{мин}, Y_{нор} \) и \(Y_{мак} \) в зависимости от поля зрения ВД и размера зрачка глаза \(D_{зрачок} \) представлены на рисунке 2.6. Как видно на рисунке 2.6, в случае ЗВВИ\(\text{мин} \) смещение \(Y_{мин} \) увеличивается с возрастанием угла поворота \(\alpha \) и уменьшением диаметра зрачка глаза \(D_{зрачок} \). В случае ЗВВИ\(\text{ном} \) смещение \(Y_{ном} \) зависит только от угла поворота глаза \(\alpha \), а в случае ЗВВИ\(\text{мак} \) смещение \(Y_{мак} \) увеличивается с возрастанием угла поворота \(\alpha \) и размера зрачка глаза \(D_{зрачок} \).

Например, когда глаз с радиусом стекловидного тела \(R=12 \text{мм} \) и размером зрачка \(D_{зрачок}=3.5 \text{мм} \) перемещается на угол \(\alpha=\pm30^\circ \), то смещения для ЗВВИ\(\text{мин} \), ЗВВИ\(\text{ном} \) и ЗВВИ\(\text{мак} \) составляют, соответственно, \(Y_{мин}=0.73 \text{мм} \), \(Y_{ном}=1.6 \text{мм} \), и \(Y_{мак}=2.5 \text{мм} \), что соответствует оптимальному положению глаза относительно положения зрачка ВД \(\Delta L_{глаз} \).
Рисунок 2.6. График смещения положения глаза относительно устройства в зависимости от диаметра зрачка $D_{зрачок}$ и угла поворота глаза α. (а) - $Y_{\text{мин}}$; (б) - $Y_{\text{ном}}$; (в) - $Y_{\text{мак}}$.

Можно сделать вывод, что оптимальное положение глаза будет смещаться в зависимости от типа ЗВВИ, которое требуется реализовать. Чем большую равномерность яркости изображения по полю зрения необходимо обеспечить, тем ближе глаз должен быть расположен к ВД.

2.3 Требование к оптическим системам виртуальных дисплеев

Подавляющее большинство оптических систем ВД, кроме имеющих малую ЗВВИ pin-light и retinal scanning display, формируют мнимое увеличенное изображение либо самого дисплея, либо промежуточного изображения дисплея. Это зависит от размера дисплея и требований к оптической системе ВД.

На рисунке 2.7 (а) показаны случаи использования маленького $D_{дисплей_1}$ и большого $D_{дисплей_2}$ дисплеев при одинаковых требованиях, предъявляемых к системе: поле зрения, ЗВВИ и расстояние от ВД до ЗВВИ $L_{глаз}$ фиксированы. Помимо дисплея оптическая система может состоять из линз, зеркал, голографических элементов, волноводов и так далее. Видно, что чем меньше дисплей, тем требуется большая числовая апертура оптической системы ($D_{\text{опт.система}}/f_i$), и, следовательно, оптическая система усложняется. С другой стороны, чем больше дисплей, тем проще будет оптическая система, но это приводит к увеличению габаритов оптической системы, что не подходит для коммерчески успешных продуктов. Поэтому, при разработке оптической системы, очень важно учитывать соотношения между размером дисплея, сложностью оптической системы и ее габаритами.

Например, для оптической системы ВД, продольный габарит которой не превышает 50мм, а поле зрения составляет порядка 80°, требуется 1,5 дюймовый
дисплей с разрешением UHD (3840×2160), что максимально близко приближается к пределу разрешения глаза человека. К сожалению, на сегодняшний день практически невозможно найти идеально подходящий дисплей, одновременно удовлетворяющий требуемым размерам и разрешению, для конкретной оптической системы. Как правило, выпускаются стандартные дисплеи размером 0,3 дюймов, 0,5 дюймов, 0,7 дюймов и разрешением: HD (1280×720), FHD (1920×1080), QHD (2560×1440) т.п. Это связано и с экономическими, и с технологическими факторами. Экономические факторы – соотношение уровней спроса и предложения, дорогое базовое и вспомогательное оборудование для производства дисплея, ограничение максимального количества получаемых с одной полупроводниковой пластины-подложки дисплеев и т.д. Технологические факторы – сложность изготовления большого числа маленьких пикселей на маленькой площади для достижения высокого разрешения, требование к яркости маленького пикселя с размером менее 10 мкм при большом сроке службы и т.д.

Чтобы избежать этих сложностей, можно формировать увеличенное промежуточное изображение в оптической системе как в системе микроскопа. Но при этом увеличивается продольный размер оптической системы.

Рисунок 2.7. (а) Два случая: использование маленького $D_{дисплей,1}$ и большого $D_{дисплей,2}$ дисплеев при одинаковых требованиях, предъявляемых к системе (поле зрения, ЗВВИ и расстояние от ВД до ЗВВИ $L_{глаз}$ фиксированы); (б)
Представление связи поля зрения, положения глаза \(L_{глаз} \) и ЗВВИ с размером апертуры оптической системы ВД

Ранее мы рассмотрели зависимость ЗВВИ и положения глаза \(L_{глаз} \) от поля зрения, и также проанализировали и определили оптимальное положение глаза \(L_{опт.глаз} \). Теперь с учетом выше проведенного анализа сформулируем требования к оптической системе.

Типы используемых оптических систем могут быть различными, соответственно, у каждой оптической системы есть свои особенности, если учитывать, что для каждой системы есть свои области применения и специализации, для каждой из них есть свои технические требования и особенности. По этой причине невозможно сформулировать единые требования к каждому виду оптических систем. Однако, существует общее требование независимо от типа оптической системы – это требование к размеру апертуры оптического элемента ближайшего к глазу, которое отмечено как «область, определяющая внешние требования (для наблюдателя) к оптической системе» на рисунке 2.7 (а). На рисунке 2.7 (б) представлена связь ЗВВИ, поля зрения и расстояния от глаза \(L_{глаз} \) до ВД с размером апертуры оптической системы ВД \(d_{апerture} \), который можно выразить как:

\[
d_{апerture} > ЗВВИ + 2L_{глаз} \tan\left(\frac{поле зрения}{2}\right)
\] (2.8)

Апертура оптической системы ВД может формироваться линзой, зеркалом, волноводом или голограммой, записанной линзой или зеркалом, и массивом оптических элементов, пространственно-временной модулятором света и т.п.

Формула (2.5) дает возможность оценить габариты и сложность разрабатываемой оптической системы, и может дать представление о возможности разработки коммерчески успешного продукта с точки зрения габаритов устройства.

Размеры апертуры оптической системы в зависимости от поля зрения представлены в виде таблицы и графика на рисунке 2.8.
Требуемый \(d_{\text{апертура}} \) для различных значений поля зрения, ЗВВИ_{ном} и \(L_{\text{глаз}} \)

Для формирования поля зрения 24° при положении глаза \(L_{\text{глаз}} = 19\,\text{мм} \), необходимо, чтобы оптическая система ВД обеспечивала ЗВВИ_{ном}=5мм, причем размер апертуры ВД должен \(d_{\text{апертура}} > 13\,\text{мм} \).

Вывод по главе 2

Исследованы требования к оптическим системам ВД в зависимости от области их применения. Была рассмотрена связь между физическими особенностями работы глаза и требованиями к разрешению и полю зрения ВД. Найдена зависимость размера поля зрения от размера ЗВВИ, а также изучено влияние, которое оказывает положения глаза на размер поля зрения. Предложена методика определения оптимального положения глаза в зависимости от ЗВВИ ВД. Исследования были проведены с учетом физических особенностей формирования изображения глазом человека. Отличительной особенностью глаза по сравнению с электронными матричными приемника является его движение, которое приводит к усложнению оптических систем ВД.

На основе проведенных исследований представлены общие требования к оптическим системам ВД с учетом физических особенностей формирования изображения глазом человека: минимальный размер апертуры оптической системы ВД в зависимости от требуемого поля зрения.
Глава 3. ИССЛЕДОВАНИЕ И РАЗРАБОТКА ВОЛНОВОДОВ И ОПТИЧЕСКИХ СИСТЕМ НА ИХ ОСНОВЕ

3.1 Ограничение поля зрения

Целью использования волновода является передача без искажения изображения от проекционной системы к глазу наблюдателя, используя свойство полного внутреннего отражения (ПВО).

Максимальный угол поля зрения волновода \(\theta_{\text{макс, поле вол}} \) (3.1), определяется двумя углами: критическим углом ПВО \(\theta_{\text{ПВО}} \) (3.2), который зависит только от показателя преломления материала волновода, и геометрическим углом волновода \(\theta_{\text{гео}} \) (3.3), который зависит от длины \(L \) и толщины \(t \) волновода. Ограничивающими факторами волновода являются показатель преломления \(n_2 \) и габариты волновода \(L \) и \(t \).

\[
\theta_{\text{макс, поле вол}} = \theta_{\text{гео}} - \theta_{\text{ПВО}} \tag{3.1}
\]

\[
\theta_{\text{ПВО}} = \arcsin \left(\frac{1}{n_2} \right) \tag{3.2}
\]

где \(n_2 \) - показатель преломления материала волновода.

\[
\theta_{\text{гео}} = \arctan \left(\frac{L}{t} \right) \tag{3.3}
\]

Для увеличения \(\theta_{\text{макс, поле вол}} \) необходимо уменьшить толщину волновода и увеличить показатель преломления. Однако, существуют ограничения и по показателю преломления оптического материала, и по толщине волновода.
Максимальное значение показателя преломления оптического материала (стекло и пластик) может достигать 2, но материалы с высоким показателем преломления не технологичны. А толщину волновода невозможно уменьшить, так как уменьшение толщины волновода приведет к увеличению количества отражений пучков, что повлечет за собой следующие две проблемы:

i) отклонение пучков от заданного значения при каждом отражении на граних волноводе из-за неидеальной параллельности двух поверхностей волновода;

ii) дополнительные потери энергии излучения и накопление шумов за счет рассеяния при ПВО на неидеальных поверхностях волновода.

Параллельность двух поверхностей влияет на качество изображения, так как при каждом отражении пучки отклоняются от номинального значения, и возрастают шумы в изображении на выходе из волновода. Чем меньше угол на входе волновода $\theta_{вол}$, тем будет больше отражений, тем хуже будет результат на выходе.

Рисунок 3.2. (а) Иллюстрация отклонения пучков на угол 2δ при отклонении одной плоскости волновода на угол $\delta=10''$; (б) угловое отклонение пучков на выходе волновода в зависимости от угла падения $\theta_{вол}$ при непараллельности двух поверхностей волновода на 10 угловых секунд в волноводе с длиной 60 мм и толщиной 0,7; 2,6; 4,5 мм.
Если одна поверхность волновода отклоняется на угол δ, то при каждом отражении пучки будут отклоняться на угол 2δ от номинального значения при неидеальной параллельности (см. рисунок 3.2 (а)).

В случае, когда одна поверхность волновода с длиной 60 мм и толщиной 0,7 мм отклонена относительно другой на угол $\delta=10$ угловых секунд, то пучки, которые входили под углами $\theta_{\text{вол}} = \theta_{\text{гео}}$ и $\theta_{\text{ПВО}}$, на выходе волновода отклоняются из-за неидеальной параллельности на 0,528° и 0,005° соответственно (см. рисунок 3.2 (б)). Это отклонение заметно глазу человека, так как разрешение глаза достигает до 1 угловой минуты (1/60°).

Непараллельность поверхностей волновода может иметь более сложной характер, например, она может быть перпендикулярной плоскости рисунка 3.2 или поверхность может быть волнистой. В таких случаях накопление паразитных отклонений введенного в волновод луча будет более сложным для расчета и трудно предсказуемым, что будет приводить к искажениям изображения, анализ которых будет затруднен.

3.2 Волновод неравномерной толщины

3.2.1 Актуальность использования волновода неравномерной толщины и принцип работы голографического оптического элемента

Голографический оптический элемент представляет собой дифракционную решетку, записанную голографическим методом (будем называть далее ГОЭ). Если материалы ГОЭ прозрачны, то при падении излучения на ГОЭ дифракция будет осуществляться в двух направлениях: будем обозначать как $m_{\text{от}}$ порядки дифракции в отраженном излучении и $m_{\text{пр}}$ – в прошедшем излучении. На рисунке 3.3 (а) показана дифракция нулевых порядков и двух первых порядков – в отраженном и прошедшем излучении. Для вывода излучения из волновода полезными являются первый порядок дифракции в прошедшем излучении $m_{\text{пр}} = +1$ и нулевой порядок дифракции в отраженном излучении $m_{\text{от}} = 0$.
В порядке дифракции \(m_{пр} = +1 \) излучение выводится из волновода под углом \(\gamma_{дпр} = +1 \). Дифрагированное излучение с порядком \(m_{от} = 0 \) распространяется дальше вдоль волновода под таким же углом \(\gamma_{дот} = \gamma_{пад} \), как и при падении на ГОЭ, а при повторном попадании на ГОЭ после ПВО на противоположенной поверхности волновода частично выводится из волновода под углом \(\gamma_{дпр} = +1 \), а частично отражается под углом \(\gamma_{дот} \) (см. рисунок 3.3 (б)). Узкое в сечении излучение на входе ГОЭ выводится из волновода из широкой области. В результате глаз может видеть излучение в широкой зоне вблизи волновода. Таким образом, зона видения виртуального изображения (ЗВИ), где можно видеть ВИ, увеличивается.

Период повторения точек выхода излучения \(L_{пучок,выв} \) из волновода можно определить по формуле:

\[
L_{пучок,выв} = 2t_1 \cdot \tan(\gamma_{пад})
\]

(3.4)

Чем меньше толщина волновода \(t_1 \), тем меньше период \(L_{пучок,выв} \) выходящего излучения. Малая пространственная частота выходящего из волновода излучения, возможно, приведет к неравномерной освещённости изображения на
сетчатке глаза. По этой причине, чем тоньше волновод, тем более равномерное распределение интенсивности изображения на выходе можно получить.

При использовании дифракционной решетки ГОЭ в качестве вводящего элемента, полезным порядком дифракции является первый порядок диффракции в прошедшем излучении $m_{пр} = -1$ (см. рисунок 3.4), излучение которого будет падать на поверхности волновода под углом $\gamma_{\text{апр}=-1}$. Причем $\gamma_{\text{апр}=-1}$ должен быть больше, чем $\theta_{\text{ПВО}}$, чтобы излучение распространялось вдоль волновода.

Рисунок 3.4. Ввод излучения на вводящем элементе

Важно отметить, что введенное в волновод излучение с дифракционным порядком $m_{пр} = -1$ не должно попадать на ГОЭ после ПВО на противоположной стороне волновода, так как это приведет к появлению дополнительных пучков в введенном в волновод излучении, которые будут искажать передаваемое изображения, то есть увеличивать шумовую составляющую. Другими словами, $L_{\text{пучок,вод}}$ должен быть достаточно большим, для этого и толщина волновода t_2 должна быть большой:

$$L_{\text{пучок,вод}} = 2t_2 \cdot \tan(\gamma_{\text{апр}=-1})$$

(3.5)

Таким образом, с одной стороны, чтобы $L_{\text{пучок,выв}}$ был мальным для уменьшения пространственной частоты вывода излучения, необходимо, чтобы волновод был тонким, а с другой стороны, чтобы $L_{\text{пучок,вод}}$ был большим для минимизации шума при вводе излучения в волновод, необходимо, чтобы волновод
был толстым. Эту проблему можно решить путем использования волновода неравномерной толщины: во входной части толщина волновода должна быть большой, а в выходной части толщина волновода – меньше.

Углы дифракции можно рассчитать аналитически. Пусть луч k^1 падает из среды с показателем преломления n_1 на решетку в среде с показателем преломления n_2 под зенитным углом γ и азимутальным углом φ в сферической системе координат (см. рисунок 3.5). Тогда угол дифракции волнового вектора k^2 можно найти следующим образом.

Рисунок 3.5. Иллюстрация дифракции на решетке

Волновой вектор в среде с показателем преломления k^i:

$$ k^i = n_i \cdot \frac{2\pi}{\lambda} \quad (3.6) $$

Вектор решетки k_d:

$$ k_d = \frac{2\pi}{\Lambda} \quad (3.7) $$

Проекция волнового вектора в среде с показателем преломления n_1 в сферической системе координат k_x^1, k_y^1 и k_z^1 по оси x, y и z, соответственно:

$$ k_x^1 = k^1 \sin(\gamma) \cos(\varphi) \quad (3.8) $$

$$ k_y^1 = k^1 \sin(\gamma) \sin(\varphi) $$
Проекция волнового вектора после дифракции в среде с показателем преломления n_2 в сферической системе координат k_x^2, k_y^2 и k_z^2 по оси x, y и z, соответственно:

\[
\begin{align*}
 k_x^2 &= k_x^1 + m \cdot k_d, \\
 k_y^2 &= k_y^1, \\
 k_z^2 &= \sqrt{(k^2)^2 - (k_x^2)^2 - (k_y^2)^2}.
\end{align*}
\] (3.9)

Зенитный угол γ и азимутальный угол φ после дифракции:

\[
\begin{align*}
 \varphi_T &= \arctan \left(\frac{k_y^{2T}}{k_x^{2T}} \right), \\
 \gamma_T &= \arctan \left(\frac{\sqrt{(k_x^{2T})^2 + (k_y^{2T})^2}}{k_z^{2T}} \right).
\end{align*}
\] (3.10)

Далее углы падения γ и дифракции γ_T будем обозначать знаками α_{i,0} и α_{i,1}, соответственно, если азимутальный угол φ равен нулю.

Формулы угла дифракции (3.10) в дальнейшем использованы для анализа параметров вводящего и выводящего элементов ГОЭ.

3.2.2 Оптимизация волновода неравномерной толщины

Для исследования ввода и вывода пучков большого диаметра проведено математическое моделирование волноводной системы неравномерной толщины. Волновод по толщине можно разделить на две части. Со стороны волновода с большей толщиной t_2 находится вводящий элемент, а со стороны волновода с меньшей толщиной t_1 – выводящий элемент.
Волноводной системе ключевыми компонентами являются вводящий и выводящий элементы, которые фактически играют роль входной и выходной апертуры волноводной системы. В качестве вводящего и выводящего элементов использованы голографические оптические элементы (ГОЭ), решетки которых имеют одинаковый период Λ. Важно отметить, что угол дифракции θ_d должен быть больше, чем критический угол ПВО θ_{PV}, чтобы излучение могло распространяться в волноводе.

На рисунке 3.6 показана схема волноводной системы с волноводом неравномерной толщины. Волноводная система состоит из двух частей: проекционной системы на входе, которая формирует изображение в бесконечности, и волновода неравномерной толщины с голографическими оптическими элементами для ввода излучения в волновод из проекционной системы и вывода из
волновода перед глазом наблюдателя. Проекционная система представляет собой объектив с фокусным расстоянием f, находящимся на расстоянии f от дисплея с диаметром $D_{дисплей}$. Проекционная система находится на расстоянии $L_{ОВ}$ от волновода. Причем, главные лучи от края дисплея проходят через ГОЭ на расстоянии $L_{В}$ от оптической оси.

Период дифракционной решетки ГОЭ (Λ) рассчитан так, чтобы два крайних главных луча попадали в одну точку на нижней поверхности волновода после первого отражения от верхней грани. Далее исследование проведено для проекционной системы, формирующей поле зрения=14°, и принимаем значение показателя преломления волновода равным $n_2 = 1.5$. Углы дифракции осевого луча и двух крайних главных лучей для удовлетворения этого условия в зависимости от $L_{В}$ принимают значения приведенные на рисунке 3.7. Однако, в некотором диапазоне $L_{В}$ дифрагированные лучи попадают на верхнюю поверхность волновода под углами $\theta_{1_П}, \theta_0$ меньшими, чем критический угол ПВО $\theta_{ПВО}$ (3.2), и излучение не будет распространяться в волноводе.

Рисунок 3.7. Угол дифракции трех лучей $\alpha_{1_Л}$ (а), α_{1_0} (б), $\alpha_{1_П}$ (в), падающих на решетку под углами $\alpha_{0_Л} = \text{поле зрения}/2 = 7^\circ$, $\alpha_{0_0} = 0$, $\alpha_{0_П} = \text{поле зрения}/2 = 7^\circ$ для различных толщин со стороны толстой части волновода и $\alpha_{ПВО}$ – критический угол полного внутреннего отражения

На рисунке 3.8 показана зависимость периода решетки Λ от расстояния $L_{В}$ для различных значений t_2 при условии совпадения двух крайних главных лучей. Очевидно, что чем больше $L_{В}$, тем меньший период решетки требуется. Причем,
период Λ уменьшается с уменьшением толщины толстой части волновода t_2.

Рисунок 3.8. Зависимость периода решетки Λ от расстояния L_B для различных значений толщины толстой части волновода t_2

Граница изменения толщины волновода определена точкой пересечения двух крайних главных лучей: i) осевого луча после первого отражения на нижней поверхности волновода; ii) правого крайнего луча, падающего на волновод из проекционной системы под углом $\alpha_{R,0}$ после первого отражения на верхней поверхности волновода. Толщина тонкой части волновода t_1 определяется этой границей (см. рисунок 3.6). Положение границы изменения толщины $L_{\text{волновод}}$ и толщина тонкой части волновода t_1 меняются в зависимости от t_2 и L_B (см. рисунок 3.9.)

Рисунок 3.9. Положение границы изменения толщины волновода $L_{\text{перепод}}$ (а) и толщина тонкой части волновода t_1 (б) в зависимости от L_B для различных
толщин t_2 толстой части волновода

Выше определены конструктивные параметры волновода и параметры дифракционной решетки. Теперь требуется определить диаметр зрачка объектива $D_\text{объектив}$, влияющего на наличие темных зон P, в которых отсутствует излучение на выходе из волновода. На рисунке 3.10 показаны два случая: (а) когда на выходе из волновода нет темных зон, в которых отсутствует излучение; (б) когда такие темные зоны на выходе волновода есть. Отсутствие излучения в некоторых зонах на выходе создает неравномерность освещение изображения при движении зрачка. Для избавления от темных зон и получения равномерного освещения необходимо на поверхности волновода создать падающий пучок диаметром не меньше, чем $D_p=0$, который связан с толщиной волновода t_1 и углом падения $\theta_\text{пад}$ следующим соотношением:

$$D_\text{пучок} = 2t_1 \cdot \tan(\theta_\text{пад})$$

(3.11)

Рисунок 3.10. Иллюстрация вывода излучения из волновода при помощи голографического оптического элемента (ГОЭ): (а) темные зоны, в которые не попадает излучение, отсутствуют на выходе при $P=0$, (б) темные зоны на выходе есть при $P\neq 0$

На рисунке 3.11 показаны конфигурации осевого пучка D_0 и двух крайних пучков $D_\text{л}$ и $D_\text{п}$, необходимые для устранения темных зон излучения на выходе, и их значения можно вычислить:
\[
D_i \geq 2D_\text{пучок}=4t_1 \cdot \tan(\alpha_{1,i})
\] \hspace{1cm} (3.12)

где \(i = \text{l}, 0, \text{p} \).

Определим диаметр зрачка объектива \(D_\text{об} \):
\[
D_\text{об} = \text{Max}(D_\text{l}, D_0, D_\text{p})
\] \hspace{1cm} (3.13)

Рисунок 3.11. Иллюстрация достаточности размера зрачка объектива для вывода излучения из волновода при помощи выводящего элемента (ГОЭ): (а) темные зоны, в которые не попадает излучение, отсутствуют на выходе при \(P=0 \), (б) темные зоны на выходе есть при \(P \neq 0 \).

Рисунок 3.12. Диаметр зрачка объектива \(D_\text{об} \) в случае отсутствия темных зон на выходе из волновода, в которые не попадает излучение.

На основании описанных выше подходов проведено моделирование волноводной системы неравномерной толщины с объективом в компьютерной
программе ZEMAX (см. рисунок 3.13).

В результате был предложен объектив с фокусным расстоянием \(f = 38.2 \) мм. Если дисплей размером 9,4мм находится в фокальной плоскости такого объектива, то расходимость пучка на выходе будет не более 14\(^\circ\). Для моделирования этой ситуации в фокальной плоскости объектива помещались три точечных источники (+4,7мм, 0мм, -4,7мм) с длиной волны \(\lambda = 532 \) нм. Для волновода выбраны толщины \(t_1 = 0.7 \) мм, \(t_2 = 4.1 \) мм и материал – ВК7, у которого показатель преломления \(n = 1.5195 \) для \(\lambda = 532 \) нм.

Воспользуемся формулами (3.11)-(3.13) для нахождения места ступенчатого изменения толщины \(L_{\text{перепад}} = 15.67 \) мм и точки пересечения крайних главных лучей с нижней поверхностью волновода \(L_v = 5.14 \) мм. В качестве вводящего и выводящего элементов выбрана дифракционная решетка с периодом \(\Lambda = 419 \) нм.

Для проверки угла отклонения на выходе волновода установлена идеальная тонкая линза с фокусным расстоянием 20 мм, как аналог модели человеческого глаза. Пучки от трех точечных источников, вышедшие из волновода, собираются в точке на расстоянии 20мм, соответствующей фокусному расстоянию идеальной тонкой линзы.
Рисунок 3.13. Результат моделирования в программе ZEMAX: толщины волновода $t_1=0,7\text{мм}$ и $t_2=4,1\text{мм}$, материал волновода BK7 ($n=1,5195$).

Показаны дифрагированные пучки только первого порядка

3.2.3 Исследование дифракционных эффективностей голографических оптических элементов

Для получения равномерной освещенности в ЗВВИ, необходимо провести оптимизацию эффективности дифракции ГОЭ по площади. Для того, чтобы вариация интенсивности излучения по площади ГОЭ была несущественной ($I_1 \approx I_2 \approx \ldots \approx I_{n-1} \approx I_n$) (см. рисунок 3.14), необходимо в той области ГОЭ, откуда излучение выводится впервые, иметь малую эффективность дифракции в прошедшем излучении и высокое отражение для излучения, распространяющегося в волноводе. При этом по мере продвижения к противоположному краю
гологарммы эффективность дифракции в прошедшем излучении должна расти, а в отраженном – уменьшаться.

Рисунок 3.14. Иллюстрация вывода излучения на выводящем элементе (ГОЭ), где \(T \) – дифракционная эффективность в прошедшем излучении, \(R \) – дифракционная эффективность в отраженном излучении.

При фиксированном периоде синусоидальной решетки эффективность дифракции можно изменять путем варьирования глубины модуляции \(h \) (см. рисунок 3.15). Для анализа дифракционной эффективности использовалась программа Virtual Lab, которая позволяет проводить анализ дифракции методом связанных волн [74], который дает хорошие результаты для периодических структур.

Рисунок 3.15. Синусоидальная решетка с периодом \(\Lambda \) и глубиной модуляции \(h \)

С использованием такого метода был проведен расчет для нескольких дифракционных решеток с разной эффективностью в прошедшем \(T \) и отраженным \(R \) излучении для длины волны \(\lambda=532\)нм и в диапазоне углов \((49^\circ, 67^\circ)\) для синусоидальной решетки с периодом \(\Lambda=419\)нм и глубиной модуляции (а) 50нм, (б) 100нм, (в) 150нм, (г) 200нм в материале волновода (см. рисунок 3.16). При этом отклонения углов дифракции в прошедшем излучении лежат в диапазоне \((-7^\circ, +7^\circ)\).
Как видно на рисунке 3.16, с увеличением глубины модуляции синусоидальной решетки уменьшается дифракционная эффективность в отраженном излучении R и увеличивается в прошедшем излучении T. А изменение зависимости дифракционных эффективностей в отраженном и прошедшем излучении от угла падения излучения $\theta_{\text{пад}}$ на решетку выражается сильнее при увеличении глубины модуляции h.

Поэтому в области ГОЭ, со стороны падения волны, глубина модуляции должна быть маленькой, чтобы энергии излучения не выходило много. На противоположном краю ГОЭ, глубина модуляции должна большой, чтобы энергии излучения вышла из волновода максимально полно. Таким приемом можно равномерно распределить энергию выходящего излучения по выводящему элементу, а, следовательно, и получить равномерную освещенность изображения на выходе.
Рисунок 3.16. Дифракционная эффективность в прошедшем T и отраженным R излучении при падении излучения под углом $\theta_{\text{пад}}$ (49°, 67°) на синусоидальную решетку с периодом Λ=419нм с глубиной модуляции (а) 50нм, (б) 100нм, (в) 150нм, (г) 200нм в волноводе. При этом углы дифракции в прошедшем излучении находятся в диапазоне (−7°, +7°).

Глубина модуляции оптимизирована для падающего излучения на решетку с периодом Λ=419нм под углом 56,68°, которое после дифракции выходит из волновода под нормальным углом к поверхности волновода.
Рисунок 3.17. Дифракционная эффективность выходящего \(T \) и отраженного в волновод \(R \) излучения от высоты рельефа при падении излучения на решетку \(\Lambda=419 \text{нм} \) под углом 56,68° в волноводе. При этом угол дифракции выходящего из волновода излучения равен нулю.

На основе найденных дифракционных эффективностей \(T \) и \(R \) проведена оптимизация глубины модуляции синусоидальной решетки так, чтобы излучение выводилось с высокой равномерностью по всей длине ГОЭ (см. рисунок 3.17). Излучение в волноводе с толщиной 0,7мм отражается 9 раз на длине решетки ГОЭ 18мм. Результат оптимизации глубины модуляции показан на рисунке 3.18: (а) глубина модуляции вдоль решетки по оси \(z \); (б) интенсивность излучения на выходе из решетки относительно падающего \(I_0 \). В результате один пучок излучения раскладывается на 9 пучков на выходе из волновода с эффективностью 28% (\(\eta=\sum_{i=1}^{9} I_i/I_0 \)) с высокой равномерностью 98% (\(\frac{\min(I_i,I_0)}{\max(I_i,I_0)} \cdot 100 \)).
Рисунок 3.18. Результат оптимизации глубины модуляции синусоидальной решетки: (а) глубина модуляции вдоль решетки по оси z (см. рисунок 3.14); (б) интенсивность излучения на выходе из решетки относительно падающего \(I_0 \).

3.2.4 Изготовление волновода неравномерной толщины

Волновод неравномерной толщины изготовлен из склейки двух плоскопараллельных пластин из стекла марка ВК7 (\\(n=1,5195 \) для \(\lambda=532\text{нм} \)) с размером 34мм×4,1мм и 75мм×0,7мм, соответственно. Поверхности плоскопараллельных пластин хорошо отполированы, чтобы при наложении они соединялись за счет оптического контакта. Пластины дополнительно склеиваются фотополимеризующимся kleem для более жесткой фиксации (см. рисунок 3.19).

Рисунок 3.19. Волновод с неравномерной толщиной: (а) склеенные две
плоскопараллельные пластины; (б) голографические оптические элементы в качестве вводящего и выводящего элементов

Решетка с заданными параметрами и периодом $\Lambda=419$ нм была записана на фоторезисте марки Shipley S1813 G2, используемого в фотолитографии, He-Cd лазером с длиной волны 442 нм (см. рисунок 3.20). Излучение He-Cd лазера, пройдя через микрообъектив и точечную диафрагму, коллимируется с помощью зеркально-линзовой системы, состоящей из линзы и вогнутого зеркала. На фоторезисте регистрируется интерференционная картина двух лучей с s-поляризацией, падающих на регистрирующую среду под углом $\vartheta=30,2^\circ$ к нормали (см. рисунок 3.20 и рисунок 3.21 (а)). Соотношение сигнал-опора варьировалось в диапазоне 1:1~1:50, для обеспечения нужной высоты рельефа фоторезиста.

Затем производилось травление экспонированного фоторезиста химическим проявителем. В зависимости от экспозиции и соотношения интенсивностей пучков травление фоторезиста приводило к образованию синусоидального рельефа различной высоты по поверхности фоторезиста (см. рисунок 3.21 (б)).

Рисунок 3.20. Оптическая схема записи голограммы
С целью защиты фоторезиста от проникновения в его толщу фотополимера на поверхность фоторезиста наносилось серебряное покрытие непосредственно на рельеф поверхности (см. рисунок 3.21 (в)-(г)).

Заключительным этапом получения волноводной системы ВД является перенос рельефа решетки с фоторезиста на поверхность волновода. Данная процедура осуществляется с помощью УФ-отверждаемого полимера (см. рисунок 3.21 (д)). Рельефная поверхность фоторезиста помещалась на жидкий фотополимер, нанесенный на волновод. После растекания фотополимера по всей площади контакта, производилось облучение УФ излучением от ртутной лампы для перевода фотополимера в твердое состояние. Когда фотополимер достаточно затвердевал, производилось отделение фотополимера с волноводом от слоя фоторезиста. Волновод обрабатывался химическим активатором адгезии для обеспечения хорошей адгезии фотополимера к волноводу. В результате, синусоидальный рельеф фоторезиста копировался на поверхность волновода (см. рисунок 3.21 (е)).

Рисунок 3.21. Процесс производства дифракционной решетки с использованием фотополимера:

(а) формирование интерференционной картины на фоторезисте; (б)
синусоидальный рельеф формируется после реакции фоторезиста с химическим проявителем; (в) серебряное покрытие наносится для защиты фоторезиста; (г) нанесение жидкого фотополимера на фоторезист, покрытый серебром; (д) экспозиция жидкого фотополимера УФ-излучением; (е) отделение фоторезиста от волновода с фотополимером в твердом состоянии.

3.2.5 Экспериментальное исследование волноводной системой неравномерной толщины

Экспериментальная установка была собрана на виброизолированном столе (см. рисунок 3.22 (а)). Был разработан специальный малогабаритный объектив, формирующий поле зрения 15° (см. рисунок 3.22 (б)). Для формирования первичного изображения использован микродисплей LCoS, в качестве источника света – зеленый лазер с длиной волны \(\lambda=532\)нм. Для работы LCoS требуются хорошо коллимированные пучки с равномерной освещенностью по площади микродисплея LCoS. Для этого в эксперименте была использована 9-и кратная телескопическая система, с выходным диаметром больше, чем апертура микродисплея, что требуется для улучшения равномерности освещённости в лазерном пучке.

Рисунок 3.22. (а) экспериментальный стол, (б) объектив с микродисплеем LCoS, (в) фото, снятое через волновод с голографическим оптическим элементом, с наложенным виртуальным изображением надписи «SAMSUNG» на фоне здания.
Заключение

С целью уменьшения влияния неравномерности волновода на качество изображения был предложен и изготовлен волновод неравномерной толщиной, размер которого со стороны вводящего элемента составлял 4,5 мм, сто стороны выводящего элемента – 0,7 мм. В качестве вводящего и выводящего элементов использованы голографические оптические элементы. Теоретически исследованы параметры волновода и параметры голографического оптического элемента. В результате исследований разработана и изготовлена волноводная система, на основе которой собраны экспериментальная установка и макет дисплея. Эксперимент показал, что разработанный дисплей формирует поле зрения 15°. Таким образом, для задач передачи виртуального изображения показан способ оптимизации ввода и вывода изображения для волновода со ступенчатым изменением толщины.

3.3 Исследование и разработка волноводной оптической системы со ступенчатой микрозеркальной структурой

3.3.1 Простейшая волноводная система с одной наклонной поверхностью

Рассмотрим модель волновода с одной наклонной вводящей поверхностью под углом \(\alpha \) и одной наклонной выводящей поверхностью под углом \(\beta \) с призмой с углом наклона \(\delta \). Призма позволяет наклонить относительно поверхности волновода проекционную систему, которая обычно располагается перпендикулярно к волноводу. Это дает возможность уменьшить габариты устройства и сделать его более эргономичным. В данной работе цель состояла в том, чтобы разработать высокотехнологичную волноводную систему. Это повлияло и на выбор пластик PMMA в качестве материала для волновода и призмы (n=1,5054 на \(\lambda =532\text{нм} \)).
Рисунок 3.23. Волновод с одной наклонной вводящей поверхностью, расположенной под углом α к поверхности волновода, и одной наклонной выводящей поверхностью под углом β с призмой с углом наклона δ

Излучение падает на поверхность призмы под углом θ_{2} и преломляется. Далее это излучение попадает на наклонную поверхность, с нанесённым на нее отражающим покрытием, и отражается. Отраженное излучение падает на поверхность волновода под углом θ_{+2}, который больше, чем критический угол ПВО $\theta_{\text{пов}}$, и распространяется вдоль волновода, доходит до выводящего элемента, попадает на наклонную поверхность с частично-отражающим покрытием под углом θ_{3} и отражается. Отраженное излучение выходит из волновода под углом θ_{4}. Все углы (θ_{-2} - θ_{4}) преломления и отражения излучения зависят от трех углов α, β и δ.

При вводе излучения в призму:

$$\theta_{-1} = \arcsin \left[\frac{\sin(\theta_{-2})}{n_{2}} \right]$$

$$\theta_{0} = \pi + \delta - \theta_{-1},$$

где n_{2} - показатель преломления волновода и призмы.

Входная часть волновода:

$$\theta_{1} = \beta + \theta_{0}$$

$$\theta_{2} = \theta_{1} + \beta$$

$$\theta_{2} > \theta_{\text{пов}}$$

Выходная часть волновода:
\[\theta_3 = \frac{\pi}{2} + \theta_2 - \alpha \]
\[\theta_4 = \theta_3 - \alpha \] \hspace{1cm} (3.16)
\[d_{выв.элемент} = \frac{T}{\tan(\alpha)} \]

Как видно в (3.16), размер выводящего элемента \(d_{выв.элемент} \) зависит от угла наклона выводящего элемента \(\alpha \).

Для оценки максимального поля зрения, которое можно передать через волновод, был разработан алгоритм, в котором учитываются углы \(\alpha \) наклона выводящей поверхности, \(\beta \) вводящей поверхности и угол наклона призмы \(\delta \) (см. рисунок 3.24) при условии того, что угол падения на призму \(\theta_2 \) равен углу выхода из волновода \(\theta_5 \). Это выполняется при условии (3.17).

\[2\alpha - 2\beta - \delta = 90 \text{ или } 0 \] \hspace{1cm} (3.17)
Рисунок 3.24. Алгоритм поиска максимального поля зрения, которое можно передать через волновод, в зависимости от угла наклона выводящей поверхности α, угла наклона вводящей поверхности β и угла призмы δ.

Результат исследования с использованием этого алгоритма представлен на рисунке 3.25. При угле $\alpha=27^\circ$, максимальное поле зрения, которое можно передать через волновод меняется в зависимости от величин углов β и δ. Причем
максимальное поле зрения для различных углов имеет одинаковое значение (см. рисунок 3.25 (а)). Это позволяет получить зависимость максимального поля зрения от угла α (см. рисунок 3.25 (б)).

Рисунок 3.25. Зависимость максимального угла поля зрения, которые можно передать через волновод: (а) от угла наклона вводящей поверхности β и угла призмы δ при α=27°; (б) от угла наклона выводящей поверхности α.

Максимальное значения угла поля зрения, передаваемого через волновод, может достигать 60°, однако этот расчет проведен для одного луча. В нашем случае необходимо передать набор лучей, что сопровождается виньетированием пучков при попадании излучения на вводящий и выводящий элементы, и, следовательно, реальное поле зрения с приемлемым значение ЗВВИ, которое можно передать через волновод, существенно уменьшается. К сожалению, на практике невозможно рассчитать поле зрения через волноводную систему для данной конфигурации, так как оптическая система не осесимметричная и неклассическая. Будем проводить оценку модели такой системы в программе LightTools, позволяющей рассчитывать трассировку лучей в сложных оптических системах.
3.3.2 Волноводная система со ступенчатой микро зеркальной структурой

Исследованы и разработаны волноводные оптические системы с новым типом выводящего элемента с целью уменьшения толщины волновода без ухудшения качества изображения, получаемого на выходе из системы.

В данной работе впервые предложено использовать волновод со ступенчатой микрозеркальной структурой (СМС) для вывода излучения из волноводной системы, что позволяет значительно увеличить размер выводящего элемента, а также дает возможность уменьшить толщину волновода при сохранении ключевых параметров ВД: поля зрения, ЗВВИ и расстояния между его апертурой и глазами наблюдателя. СМС условно состоит из двух типов поверхностей: наклонных, расположенных под углом к плоскости волновода d_n, и горизонтальных d_g, параллельных к плоскости основания волновода (см. рисунок 3.26). Наклонные поверхности отражают распространяющееся по волноводу излучение в направлении наблюдателя, а горизонтальные – позволяют излучению распространяться дальше вдоль волновода. Такая структура дает возможность расширить ЗВВИ, не увеличивая толщину волновода, и обеспечивает малые массу и габариты оптической системы. В отличии от варианта выводящего элемента с набором параллельных зеркал [41-45], предложенная конструкция является высокотехнологичной, что позволяет применять её в массовом производстве.

Волноводная система с СМС состоит из двух частей: основного волновода, где излучение распространяется за счет полного внутреннего отражения (ПВО), и выводящего элемента, в котором излучение выводится наружу за счет СМС и компенсатора СМС, который имеет идентичную ступенчатую структуру и соединяется с основным волноводом по ступенчатой структуре, образуя с ним прямоугольный волновод с внутренней СМС. Такая реализация волновода позволяет пропускать излучение от внешней среды без искажений и обеспечивает прочную конструкцию волновода.

Использование компенсатора с СМС приводит к отсутствию воздушного зазора, что нарушает условие ПВО. Соответственно, при правильном изготовлении
такой структуры, излучение не будет отражаться от поверхности СМС, а будет проходить сквозь СМС и, соответственно, не будет выводиться из волновода в направлении глаза. Контролируемый вывод достигается при помощи нанесения частично-отражающего покрытия на СМС.

Рисунок 3.26. Ступенчатая микрозеркальная структура (СМС)

Важными параметрами СМС являются соотношение размеров d_r/d_n и количество ступеней $N_{ступ}$. Соотношение размеров d_r/d_n влияет на увеличение размера выводящего элемента, количество ступеней $N_{ступ}$ – на размеры зоны, в которой нет излучения, и зоны дифракции (см. параграф 3.3.4).

Первый важный параметр – соотношение d_r/d_n, которое определяет размер выводящего элемента. Чем больше соотношение d_r/d_n, тем больше можно увеличить размер выводящего элемента. Однако, мы не можем увеличить d_r/d_n. С одной стороны, области где можно видеть изображения будут уменьшаться, а, с другой стороны, при малых размерах d_r и d_n, соотношение d_r/d_n будет влиять на размер зоны дифракции (см. параграф 3.3.4). Поэтому важно найти оптимальные размеры d_r и d_n, и их соотношение d_r/d_n.

Полное внутреннее отражение

Выводной элемент СМС $d_{выб, СМС}$

α

δ

γ

β

θ

ϕ

λ

ξ

ω

η

ζ

ν

κ

ι

ρ

σ

τ

υ

ξ

ν

κ

ι

π

θ

ϕ

ψ

ω

ζ

η

ρ

σ

τ

υ

ξ

ν

κ

ι

π

θ

ϕ

ψ

ω

ζ

η

ρ

σ

τ

υ

ξ

ν

κ

ι

π

θ

ϕ

ψ

ω

ζ

η

ρ

σ

τ

υ

ξ

ν

κ

ι

π
Второй важный параметр – количество ступеней $N_{ступ}$. При разбиении одной наклонной поверхности выводящего элемента (см. рисунок 3.23) на ступеньки, возникают темные зоны, в которых отсутствует излучение (обозначенное на рисунке 3.27 как «Пропуск») из-за вывода излучения только от наклонных поверхностей. При малом количестве ступеней размер темной зоны сравним с размером зрачка глаза. В этом случае глаз может не видеть как все ВИ полностью, так и часть ВИ. Например, если положение глаз приходится на темную зону пропуска, а темная зона больше, чем зрачок глаза, то глаз не увидит эти пучки.

С другой стороны, при слишком большом $N_{ступ}$ и при определённой толщине волновода T, размеры ступеньки $d_н$ и $d_г$ будут сравнимы с длиной волной, что приведет к дифракции при отражении и может негативно сказаться на качестве ВИ. По этим причинам важно найти оптимальные размер и количество ступеней $N_{ступ}$.

3.3.3 Выбор параметров волноводной системы
Важными характеристиками и параметрами волноводной системы с СМС являются:
- характеристики волноводной системы: поле зрения, ЗВВИ, положение ЗВВИ и размер выводящего элемента;
параметры волноводной системы: толщина волновода, угол наклона выводящего элемента α, угол наклона вводящего элемента β, угол наклона призмы δ, количество ступеней $N_{стуp}$ и размеры ступеней d_r и d_n.

Для начала сформулируем требования к характеристикам волноводной системы:

а) поле зрения – 24°, которое соответствует пространственному размеру виртуального изображения 50 дюймов на расстоянии 3 метров от глаза наблюдателя. В этом случае, соотношение площади дисплея к площади устройства K равно $92,67$ (1.1);

б) ЗВВИ – выбран тип ЗВВИмак, в которой можно видеть ВИ с равномерной освещенностью по всему полю зрения. ЗВВИмак равняется $8,2$мм согласно (2.3);

в) положение ЗВВИ $L_{звви}$ должно быть больше, чем 15мм;

г) размер выводящего элемента $d_{выв,смс}$ должен удовлетворять условию (2.8);

д) уровень равномерности освещенности изображения на сетчатке глаза по полю зрения должен быть больше, чем 75% по рекомендациям для дисплейной техники.

Теперь сформулируем требования к параметрам волноводной системы:

а) толщина волновода $t=3,5$мм, чтобы

б) угол наклона призмы выбран $\delta=28^\circ$ с учетом среднестатистической формы головы и расположения глаза;

в) длина волновода не должна превышать 50мм для компактности;

г) угол наклона вводящего элемента выбран $\beta=13^\circ$, чтобы горизонтальный размер вводящего элемента, с одной стороны, был больше 10мм, чтобы пучок с большим диаметром вводился в волновод, а, с другой стороны, был меньше 20мм, чтобы вводящий элемент не попал в поле зрения глаза. При $\beta=13^\circ$ размер выводящего элемента примерно равен 15мм;

д) угол наклона выводящего элемента $\alpha=27^\circ$ по формуле (3.17).
Оставшиеся параметры: количество ступеней $N_{ступ}$ и размеры ступеней d_r и d_n будем определять путем оптимизации параметров для получения равномерной освещенности виртуального изображения по всему полю зрения.

Чем больше длина выводящего элемента $d_{выв.смс}$, тем большее соотношение d_r/d_n требуется при одинаковом количестве ступеней (см. рисунок 3.28 (а)). Пусть $d_{выв.смс} = 15,584мм$, который удовлетворяет условию (2.8). В этом случае размеры ступеней становятся меньше, чем сто длин волны, начиная с $N_{ступ}$ больше 12 шт как показано на рисунке 3.28 (б). По этой причине целесообразно выбрать количество ступеней $N_{ступ} < 12$.

Рассмотрим изменение соотношения d_r/d_n в зависимости от количества ступеней при толщине волновода $t=3,5мм$.

Рисунок 3.28. (а) График зависимости соотношения d_r/d_n от количества ступеней для различных значений размера выводящего элемента со ступенчатой микрозеркальной структурой ($d_{выв.смс} = 10; 15; 15,584мм$) для толщины волновода $t=3,5мм$, (б) график зависимости размеров ступеней d_r и d_n от количества ступеней $N_{ступ}$ при $d_{выв.смс} = 15,584мм$.

Для анализа выбора оптимальных параметров d_r, d_n и $N_{ступ}$ с целью
получения равномерности освещённости изображения на сетчатке глаза больше 75%, моделировалась оптическая система (см. рисунок 3.29) состоящая из следующих модулей: осветительная система, дисплей, проекционная система, призма, волноводная система и модель глаза, моделирование производилось в программе LightTools

Рисунок 3.29. Компьютерная модель в программе LightTools. Микродисплей с осветительной системой (1), проекционная система (2), призма для отклонения пучков (3), волновод с СМС (4), компенсатор с СМС (5), глаз (6)

Микродисплей с осветительной системой генерирует исходное изображение. Микродисплей находится в фокусе проекционной системы для формирования ВИ в бесконечности. Пучки заводятся в волновод через призму и распространяются вдоль волновода за счет ПВО. Пучки доходят до выводящего элемента с СМС и выходят из волновода к глазу.

Анализ оптимизации заключается в том, чтобы рассчитать насколько равномерное по освещённости изображение дисплея можно получить на сетчатке модели глаза в зависимости от \(d_g, d_n \) и \(N_{ступ} \). По рассчитанным размерам на рисунке 3.28 (б) проведено моделирование освещённости на сетчатке глаза по методу трассировки лучей для различного количества ступеней \(N_{ступ} \), изменяющих \(d_g, d_n \).
Рисунок 3.30. Результат симуляции распределения освещённости на сетчатке: (а) освещённость в двухмерном пространстве при $N_{\text{ступ}} = 2 \ldots 7$; (б) при $y=0$ при $N_{\text{ступ}} = 2 \ldots 7$; (в) освещённость в двухмерном пространстве при $N_{\text{ступ}} = 8 \ldots 13$; (г) при $y=0$ при $N_{\text{ступ}} = 8 \ldots 13$;

Результаты моделирования показаны на рисунке 3.30. Как видно на рисунке 3.30 образуются полосы неравномерного распределения освещённости за счет
неравномерного вывода излучения из горизонтальной поверхности d_r. Чем больше количества ступеней $N_{ступ}$, тем меньше размер d_r, и, соответственно, лучше равномерность освещённости на выходе волновода. Равномерность освещённости $\xi_{равн}$ оценивается по соотношению минимальной освещённости $E_{мин}$ к максимальной освещённости $E_{макс}$ при $y=0$, так как освещённость меняется периодично вдоль горизонтального сечения $x (y=0)$ (см. рисунок 3.30 и рисунок 3.31).

$$\xi_{равн} = \frac{E_{мин}}{E_{макс}} \cdot 100$$ \hspace{1cm} (3.18)

Рисунок 3.31. Оценка равномерности освещенности на сетчатке глаза на примере с числом ступеней $N_{ступ} = 11$

Анализ оценки равномерности освещённости по формуле (3.18) показал, что наиболее высокая освещенность $\xi_{равн} = 83\%$ достигается при $N_{ступ} = 11$ (см. рисунок 3.32).
При разработке волновода большое внимание было уделено нахождению оптимального соотношения размеров микромеркал \((d_r/d_n)\), углов наклона \(\alpha, \gamma, \beta\) и параметров зеркальных покрытий для получения широкой ЗВВИ и высокой однородности виртуального изображения при наблюдении глазом.

Проведено компьютерное моделирование волноводных оптических систем со ступенчатой микромеркальной структурой, проведен анализ равномерности освещённости на сетчатке глаза для различных значений \(d_r, d_n\), которые зависят от количества ступеней \(N_{стуp}\). В результате были найдены оптимальные параметры волноводной системы, при которых равномерность освещённости ВИ с полем зрения 24° достигала 83%: \(N_{стуp} = 11, \ d_r = 0,7\text{мм, } d_n = 0,872\text{мм при толщине волновода } t=3,5\text{мм, угле наклона призмы } \delta=28°, \ длине волновода } L=47\text{мм, угле наклона вводящего элемента } \beta=13°, \ угле наклона выводящего элемента } \alpha=27°.

В результате длина выводящего элемента в сравнении с волноводом с одной наклонной гранью увеличилась в 2,4 раза той же толщине волновода, что позволило увеличить ЗВВИ до 9мм, положение ЗВВИ до 19мм, поле зрения до 24°, а соответствующее соотношение размера устройства к размеру дисплея до \(K=92,67\).
3.3.4 Исследование дифракции на ступенчатой микрозеркальной структуре

Ступенчатая микрозеркальная структура (СМС) состоит из двух типов поверхностей: наклонной с длиной \(d_n \) и параллельной к поверхности волновода с длиной \(d_g \). Угол между наклонной поверхностей и основанием волновода равен \(\alpha \).

Цель исследования заключается в том, чтобы понять влияние дифракции на качество изображения для различных значений размеров \(d_g \) и \(d_n \), которые зависят от количества штрихов \(\tilde{n} = N_{\text{ступ}} \) (см. рисунок 3.28 (б)).

Для проведения анализа на начальном этапе получим выражение для дифракции в общем виде (см. рисунок 3.33).

Рисунок 3.33. Общая схема дифракционной решетки. \(a(x',y'z') \) – источник; \(b(x'',y'',z'') \) – точка наблюдения [75]

\[
d\mathcal{E}(x'',y'',z'') = \frac{\rho \mathcal{E}_0}{R'R''} \exp\{i[\omega t - k(R' + R'')]\}d\sigma
\]
(3.19)

Учитывая геометрию задачи, можно сделать следующие допущения:

1) Амплитуда волны в выражении (3.19), относящаяся к единице площади решетки, постоянна:

\[
\frac{\rho \mathcal{E}_0}{R'R''} = \mathcal{E}_0' \approx \text{const}
\]
(3.20)

2) Источник и точка наблюдения находятся в бесконечности \((r \ll R', \ r \ll R'') \):
Рисунок 3.34. Схема расположения источника \((r^\prime, \theta^\prime, \psi)\), дифракционной решетки (в плоскости \(YOZ\)) и точки наблюдения \((r'', \theta'', \varphi)\).

Обозначаем направляющие косинусы источника \(\alpha^\prime = x^\prime/r^\prime\), \(\beta^\prime = y^\prime/r^\prime\), \(\gamma^\prime = z^\prime/r^\prime\) и точки наблюдения \(\alpha'' = x''/r''\), \(\beta'' = y''/r''\), \(\gamma'' = z''/r''\). Их суммы – \(\delta\), \(\mu\) и \(\nu\), соответственно (см. рисунок 3.34):

\[
\delta = \alpha^\prime + \alpha'' = \cos\theta^\prime \cos\psi + \cos\theta'' \cos\varphi
\]

\[
\mu = \beta^\prime + \beta'' = \cos\theta^\prime \sin\psi + \cos\theta'' \sin\varphi
\]

\[
\nu = \gamma^\prime + \gamma'' = \sin\theta^\prime + \sin\theta''
\]

Рисунок 3.35. Схема треугольного профиля штриха решетки
Интенсивность в точке наблюдения можно выразить через произведение трех функций J_{z0}, $J_{\vec{n}}$ и J_{Λ}:

$$J = J_{z0} \cdot J_{\vec{n}} \cdot J_{\Lambda}$$ \quad (3.23)

Физический смысл этих выражений следующий:

1) J_{z0}- дифракция на прямоугольном отверстии шириной z_0;

$$J_{z0} = \varepsilon_0' z_0^2 \left(\frac{\sin u_1}{u_1} \right)^2,$$

где $u_1 = k z_0 v / 2$.

2) $J_{\vec{n}}$- интерференция пучков, идущих в точку наблюдения от штрихов решетки;

$$J_{\vec{n}} = \left(\frac{\sin \theta}{\sin \theta} \right)^2,$$

где $\theta = k d \mu / 2$.

3) J_{Λ}- дифракция на профиле решетки.

$$J_{\Lambda} = \left[\int_{\Lambda} \exp[+ik(x\delta + y\mu)]dl \right] \left[\int_{\Lambda} \exp[-ik(x\delta + y\mu)]dl \right],$$

где Λ- область интегрирования (один период дифракционной решетки).

Рассмотрим случай, когда пучок падает параллельно плоскости XOY. Тогда $\theta' = 0$, $\theta'' = 0$, соответственно, $v = 0$, $u_1 = 0$ и $J_{z0} = \text{const}$. Поэтому интенсивность J (3.23) можно представить в следующем виде:

$$J \sim J_{\vec{n}} \cdot J_{\Lambda}$$ \quad (3.27)

Отражение происходит только от одного типа поверхности, описываемого уравнением: $x = c(y - d)$. Следовательно, выражения под интегралом в (3.26) можно упростить:

$$J_{\Lambda} = \left(1 + c'^2 \right) \left[\int_{y_0}^{d} \exp[+ik((\mu + c')y - c'd\delta)]dy \right] \left[\int_{y_0}^{d} \exp[-ik((\mu + c')y - c'd\delta)]dy \right]$$ \quad (3.28)
\[
\frac{1+c'\mu}{k^2(\mu+c')^2} \left[2 - \exp(ik(\mu+c')(y_0-d)) \right] - \exp(-ik(\mu+c')(y_0-d))
\]
где \(\mu = \sin\psi + \sin\varphi, \delta = \cos\psi + \cos\varphi, \) т.к. \(\theta' = 0, \theta'' = 0 \) (см.(3.22)).

На рисунке 3.36 представлен пример расчета величин \(J_\bar{n}, J_\Lambda \) и \(J \) для конкретной геометрии задачи. Расчет показал, что расстояние между максимумами функции \(J_\bar{n} \) (см. рисунок 3.36 (а)) оказывается существенно меньшим, чем максимальное разрешение глаза. Это связано с тем, что период решетки (\(\sim 10^{-3} \) м) много больше длины волны излучения (\(\sim 10^{-7} \) м). По этой причине в данной задаче важны не положения и количество максимумов \(J_\bar{n} \), а огибающая кривая \(J_\Lambda \) (см. рисунок 3.36 (б)).

Для оценки дифракции будем использовать угловые величины \(\Delta\varphi_1 \), которые представляют собой угол в котором лежит основная часть энергии пика. За \(\Delta\varphi_1 \) возьмем угол между направлениями на половину уровня центрального максимума. Остальными порядками, за исключением первого можно пренебреть, т.к. основная энергия (не менее 95%) сосредоточена именно в первом порядке \(I_1 \). На рисунке 3.37 представлены изменение углового расстояния \(\Delta\varphi_1 \) и максимум первого порядка \(I_1 \) в зависимости от количества штрихов \(\bar{n} \).
По рисунку 3.37 можно сказать, что чем больше количества штрихов, тем шире угол $\Delta \varphi_1$, соответственно, тем хуже разрешение, а величина максимума не зависит от количества штрихов (<5 процентов).

В выбранной по равномерности распределения яркости геометрии $\bar{n} = 11, d_r = 0,7 \text{мм}, d_n = 0,871 \text{мм}$ можно сказать, что максимальное разрешение этого варианта составляет 0,062°.

3.3.5 Прототипирование виртуального дисплея дополненной реальности со ступенчатой микрозеркальной структуры

В результате проведения исследований разработан и изготовлен прототип ВД дополненной реальности с использованием СМС, реализованного в виде очков. Собранный прототип оптической системы оказан на рисунке 3.38. Система состоит из трех частей: осветительной системы, проекционной системы и волноводной системы со СМС.

Волновод состоит из двух частей:

1) Основного волновода, в котором излучение распространяется за счет ПВО,
2) Компенсатора СМС для отображения внешней среды без искажения.
Чтобы излучение от внешней среды не искажалось, необходимо устанавливать компенсатор. В результате объединения с основным волноводом система имеет форму плоско параллельной пластины.

Использование компенсатора с СМС приводит к отсутствию воздушного зазора, что нарушает условие ПВО. Из-за этого излучение не будет отражаться от поверхности СМС, а будет проходить сквозь СМС и не будет выводится из волновода в направлении глаза наблюдателя. Этот вопрос решен при помощи нанесения частично-отражающего покрытия на СМС.

![Рисунок 3.38. (а) разобранный волновод с модулем проекционной системы: Основной волновод с СМС (1), Компенсатор с СМС (2), Объединённый волновод (3), модуль проекционной системы с призмой, объективом, осветительной системой и микродисплееlem LCoS (4). (б) собранный прототип: Микродисплей (1), модуль проекционной системы (2), вводящий элемент (3) и объединённой волновод с СМС (4).](image1)

Как видно на рисунке 3.39 (а) и (б) СМС не искажает излучение от внешней среды.

Виртуальное изображение, зарегистрированное на цифровую камеру смартфона, помещенную в ЗВВИ прототипа показано на рисунке 3.39 (в). Прототип микрозеркального дисплея формировал цветное виртуальное изображение с высоким качеством с полем 24° и размером ЗВВИ равным 9 мм.
В результате исследования и проведенных работ был изготовлен прототип, состоящий из трёх частей: осветительной системы, проекционной системы, волноводной системы с СМС. Прототип имеет поле зрения 24°, что соответствует размеру 50-дюймового дисплея на расстоянии 3 м, однородность изображения – 85%, ЗВВИ – 9 мм при толщине волновода 3,5 мм. Все оптические компоненты для снижения массы были изготовлены из РММА, корпус – из пластика. Масса прототипа составила 15 г. Примеры виртуальных изображений, формируемы прототипом и записанные цифровой камерой, приведены на рисунке 3.39 (б) и (в) соответственно.

Вывод по главе 3

Предложена новая конструкция выводящего элемента «ступенчатая микрозеркальная структура», предназначенная для вывода излучения из волновода. Такой подход позволил увеличить ЗВВИ на относительно большом расстоянии от глаза наблюдателя, что невозможно обеспечить классическими волноводами с одной наклонной поверхностью при постоянной толщине волновода.

В результате исследования был изготовлен прототип волноводной системы из пластика РММА, который позволил увеличить ЗВВИ до 9 мм на расстоянии 19 мм, что получается обеспечить классическими волноводами только при
увеличении размера выводящего элемента в 2,3 раза, что, соответственно, увеличивает и толщину волновода в 2,3 раз.
Глава 4. ИССЛЕДОВАНИЕ РАСТРОВЫХ ОПТИЧЕСКИХ СИСТЕМ

Растровая оптика широко применяется в оптических системах микроскопов, объективов фото- и видеокамер и навигационных устройств, в виртуальных дисплеях (ВД) для уменьшения их продольных габаритов [48-51]. Виртуальным дисплеем называется устройство, которое создает виртуальное (мнимое) увеличенное изображение. Виртуальные дисплеи могут быть классифицированы по их прозрачности для глаза наблюдателя. Если устройство не прозрачно, т.е. глаз может видеть только виртуальное изображение, то оно называется устройством виртуальной реальности. Если устройство частично прозрачно, что позволяет глазу видеть одновременно и реальный мир, и виртуальное изображение, то оно называется дисплеем дополненной реальности. В зарубежной литературе существует ряд аналогов названия ВД: Head-Mounted Display (HMD), Head-Up-Display (HUD), Near-Eye-Display, Virtual Reality (VR), Augmented Reality (AR) и т.д.

Конечная цель создания ВД – это формирование для человека ощущения нахождения в виртуальном мире, т.е. оптическая система ВД должна создавать такое виртуальное изображение, при котором человек не чувствует различия между виртуальным изображением и реальным миром. Для этого ВД должен обеспечивать высокое разрешение и вызывать у пользователя минимальный дискомфорт. Поскольку ВД располагается на голове зрителя, его вес и габариты играют весьма важную роль. В связи с этим применение растровой оптики для построения виртуального изображения, использованное в патенте [56], является хорошим подходом к минимизации габаритов устройств ВД. Согласно принципам построения оптических систем, при фиксированных размере дисплея и положении глаза наблюдателя габаритные размеры оптической системы будут возрастать с увеличением требуемого поля зрения, а применение растровых систем позволит уменьшить продольные габариты ВД.

В ряде работ предложены следующие типы растровых систем: 1) матрица сферических линз с коротким фокусом на плоской подложке перед дисплеем [52]; 2) плоские цветные голограммы, записанные матрицей линз [53]; 3) растровая
голограмма на неплоской поверхности (записанная матрицей линз) с контактной линзой [54]; 4) схема с набором отверстий, работающая по принципу камеры-обскуры [55]. В этих работах достигнуты положительные результаты построения непрерывного виртуального изображения с большим полем зрения и малыми габаритами системы. В качестве базовых элементов в этих системах использовались матрицы зеркал, линз, отверстий или микроголограмм линзовых растр. К сожалению, ни в одной из перечисленных работ не проведено исследование оценок предельного разрешения, которое можно обеспечить в подобных системах.

В настоящей работе описаны оптические свойства трех основных концепций растровых систем с зеркальными базовыми элементами. Однако предельное разрешение можно аналогичным образом оценить не только для систем с зеркальными (базовыми), но и с линзовыми элементами.

Сначала нами рассматривается очень привлекательная с инженерной точки зрения схема, в которой каждый базовый элемент растровой системы формирует изображение только одного пикселя, а также вторая схема, в которой базовый элемент формирует небольшую часть виртуального изображения. В третьей схеме анализируется возможность создания ВД в виде контактной линзы, на которой расположены базовые элементы растровой системы (аналогично первой схеме).

4.1 Схема «один точечный источник – одно зеркало»

Рассмотрим построение ВД, в котором базовым элементом растровой системы является один точечный источник (ТИ) (один пиксель), расположенный перед строящим виртуальное изображение вогнутым зеркалом. Подобная схема частично описана в патенте [56]. В качестве базового элемента такой системы выбрано зеркало, поскольку оно, в отличие от линзы, не имеет хроматических аберраций. Если ТИ находится в фокусе зеркала, то его излучение после отражения от поверхности зеркала будет распространяться в виде параллельного пучка, т.е. изображение ТИ будет находиться на бесконечности (см. рисунок 4.1).
Рисунок 4.1. Схема системы «один точечный источник – одно зеркало»

Если несколько таких ТИ с зеркалами находятся на равном расстоянии от центра зрачка глаза и угол между осями зеркал есть \(\alpha_{зер} \), то каждый ТИ с зеркалом будет формировать параллельный пучок. Углы между соседними пучками также будут \(\alpha_{зер} \), и каждый из пучков будет восприниматься глазом как точка, находящаяся на бесконечности.

Очевидно, что для получения максимального количества таких виртуальных точек зеркала должны располагаться вплотную друг к другу, т.е. без зазоров. Из рисунка 4.1 следует:

\[
\tan \left(\frac{\alpha_{зер}}{2} \right) = \frac{D_{зер}}{2(L_{глаз} + L_f - S)},
\]
(4.1)

\[
S = R - \sqrt{R^2 - \left(\frac{D_{зер}}{2}\right)^2},
\]
(4.2)

где \(D_{зер} \) – диаметр зеркала; \(S \) – стрелка прогиба зеркала; \(L_f \) – фокусное расстояние зеркала; \(L_{глаз} \) – расстояние от глаза до точечного источника; \(R \) – радиус кривизны сферического зеркала.

Поскольку для сферического зеркала

\[
R = 2 \cdot L_f,
\]
(4.3)

то
\[
\alpha_{зер} = 2\arctan\left[\frac{D_{зер}}{2(l_{eye}-L_f-\sqrt{4L_f^2-D_{зер}^2/4})}\right].
\]

(4.4)

Из выражения (4) можно найти диаметр зеркала:

\[
D_{зер}(L_{глаз}, L_f, \alpha_{зер}) = 2\tan\left(\frac{\alpha_{зер}}{2}\right) \left[(L_{глаз} - L_f) \pm \sqrt{L_f^2 \left(4 + 3\tan^2\left(\frac{\alpha_{зер}}{2}\right)\right) + 2L_{глаз}L_f\tan^2\left(\frac{\alpha_{зер}}{2}\right) - L_{глаз}^2\tan^2\left(\frac{\alpha_{зер}}{2}\right)} \right]
\]

(4.5)

Плотность \(P\) размещения ТИ в плоскости рисунка 4.1 равняется числу ТИ в единичном угле:

\[
P = \frac{1}{\alpha_{зер}}.
\]

(4.6)

Ясно, что чем меньше \(\alpha_{зер}\), тем больше ТИ можно интегрировать в дисплей такого типа и тем меньше может быть диаметр зеркала \(\alpha_{зер}\). Однако уменьшать его можно только до определенного значения, при котором дифракция на зеркале начинает влиять на разрешение. Известно, что угловой дифракционный предел разрешающей способности

\[
\Psi_{диф} = 1,22 \cdot \frac{\lambda}{D},
\]

(4.7)

где \(\lambda\) – длина волны излучения; \(D\) – диаметр входного зрачка оптической системы (в нашем случае \(D=D_{зер}\)).

Если при малом диаметре зеркала \(\Psi_{диф}\) превысит \(\alpha_{зер}\), то различить два близкорасположенных ТИ невозможно и дальнейшее увеличение количества ТИ не имеет смысла. Таким образом, угол \(\alpha_{зер}\) должен быть больше углового дифракционного предела разрешения:

\[
\alpha_{зер} > \Psi_{диф} = 1,22 \cdot \frac{\lambda}{D_{зер}}.
\]

(4.8)

Из (4.8) можно найти минимальный диаметр зеркал \(D_{зер}\), при котором в схеме рисунка 4.1 можно установить максимальное количество ТИ (см. рисунок 4.2):
Рисунок 4.2. Зависимости $D_{зер}$ ($\alpha_{зер}$) при $L_{глаз}=15$ мм и $L_f=2$ мм (черная линия) и $D_{зер ми}n$ ($\alpha_{зер}$) при $\lambda=550$ нм (серая кривая). Закрашена область, в которой $D_{зер}$ и $\alpha_{зер}$ удовлетворяют условию (4.8).

Из приведенных на рисунке 4.2 зависимостей следует, что при $L_{глаз}=15$ мм, $L_f=2$ мм и $\lambda=550$ нм оптимальный диаметр зеркала равен $\approx 0,107$ мм, угол между зеркалами – 0,36°, а угловое разрешение составляет 2,8 точек/град. Из эргономических соображений ограничим расстояние $L_{глаз}$ диапазоном 10 – 20 мм, а фокусное расстояние L_f – диапазоном 1–5 мм. На рисунке 4.3 приведены зависимости $\alpha_{зер}$ ($L_{глаз}$, L_f) и $D_{зер}$ ($L_{глаз}$, L_f), рассчитанные для приведенных выше диапазонов значений $L_{глаз}$ и L_f. Видно, что чем больше $L_{глаз}$ и L_f, тем меньше $\alpha_{зер}$. Таким образом, схема «один ТИ – одно изображающее зеркало» имеет ограничение по числу ТИ, которые можно различать в виртуальном изображении.

Здесь важно отметить, что размер элементарного оптического элемента должен быть больше зоны видения виртуального изображения (ЗВВИ, англоязычный термин Eye Box (EB))
Рисунок 4.3. Зависимости от $L_{\text{глаз}}$ и L_f угла $\alpha_{\text{зер}}$ (а) и диаметра $D_{\text{зер}}$ (б).

\begin{equation}
D_{\text{зер}} > D_{\text{ЗВВИ}}.
\end{equation}

В результате в случае, когда только один ТИ находится в фокусе оптического элемента, максимальное разрешение составляет примерно три точки в угле, равном одному градусу, при условии, что $L_{\text{глаз}} = 10–20$ мм.

4.2 Схема «несколько пикселей для одного изображающего зеркала»

Ограничение количества ТИ в угле, равном одному градусу, в первой схеме возникает из-за дифракции на элементарном изображающем зеркале малого диаметра.

Рассмотрим теперь случай, когда перед каждым элементарным зеркалом находится не один ТИ, а его матрица, т.е. пространственно-временной модулятор света (ПВМС). Такие миниматрицы ТИ могут быть интегрированы в одну общую матрицу с нерегулярным распределением ТИ по ее площади.

Данная схема дает возможность увеличить плотность ТИ за счет увеличения размера зеркала, поскольку тогда перед каждым зеркалом можно добавить еще несколько ТИ, пока вогнутое мини-зеркало позволяет разрешать источники излучения по критерию Рэлея (см. (4.8)). В отличие от предыдущего случая, каждое зеркало будет формировать изображение не одного ТИ, а увеличенное изображение...
его матрицы. Все вместе элементарные зеркала растровой системы формируют большое виртуальное изображение.

Рисунок 4.4. Схема элемента растровой системы, формирующего часть виртуального изображения с полем зрения $\alpha_{\text{м.ти}}$ (а), и пятна световых полей ТИ матрицы, расположенных в ее центре и на концах диагоналей, в плоскости зрачка глаза на расстоянии $L_{\text{глаз}}$ от матрицы ТИ после отражения от зеркала (б).

Здесь важно отметить, что зеркало должно обеспечивать разрешение каждого ТИ в их матрице. Нахождение перед каждым зеркалом нескольких ТИ позволит увеличить диаметр элементарного оптического элемента, что, возможно, увеличит общее количество разрешаемых ТИ по сравнению с предыдущим случаем при равных расстояниях $L_{\text{глаз}}$ от глаза до ТИ.

На рисунке 4.4 (а) представлена схема элемента растровой системы,
который формирует часть виртуального изображения. В отличие от первой схемы, перед зеркалom находится матрица ТИ (см. рисунок 4.4 (б)). На рисунке показаны центральные лучи и по два крайних луча, исходящих из ТИ матрицы и расположенных в ее центре и на концах диагонали. Эти лучи формируют поле зрения зеркала $\alpha_{м,ти}$.

На рисунке 4.4 (б) (справа) показаны области, засвеченные четырьмя ТИ, расположенными на концах диагоналей матрицы и в ее центре, на расстоянии $L_{глаз}$ от матрицы ТИ после отражения от зеркала. Как видно из рисунка, чтобы использовать до половины световой энергии крайних полей с диаметрами $D_{к,поле}$, необходимо, чтобы диаметр поля $D_{н,поле}$, образованный пересечением главных лучей крайних ТИ матрицы с плоскостью зрачка глаза, был меньше или равен диаметру зрачка глаза ($D_{н,поле} \leq D_{глаз}$); разность освещенностей на сетчатке из-за виньетирования пучков зрачком может быть компенсирована различной яркостью ТИ.

Из рисунка 4.4 следует:

\[
D_{н,поле} = 2\left(L_{глаз} + L_f - S\right) \cdot \tan(k \cdot \arctan\left(\frac{D_{зер}}{2(L_{глаз} + L_f - S)}\right)).
\] (4.11)

где $k = \alpha_{м,ТИ} / \alpha_{зер}$.

Чтобы не было пропусков и разрывов в виртуальном изображении, края двух соседних изображений должны либо совпасть, либо перекрыться. Условие перекрытия виртуальных изображений соседних элементов растровой системы определяется из следующего неравенства: $\alpha_{м,ТИ} / 2 \geq \alpha_{зер} - \alpha_{м,ТИ} / 2$ (см. рисунок 4.5), откуда следует, что

\[
\alpha_{м,ТИ} \geq \alpha_{зер}.
\] (4.12)
Ключевыми параметрами для исследования рассматриваемых систем являются диаметр зеркала, положение глаза и параметр k.

Как видно из рисунка 4.6, изменение фокусного расстояния зеркала L_f почти не влияет на диаметр $D_{\text{п.поле}}$. Однако чем больше $D_{\text{зер}}$, тем больше $D_{\text{п.поле}}$. Условие использования половины световой энергии каждого ТИ требует, чтобы $D_{\text{п.поле}} \leq D_{\text{глаз}}$. Поскольку $D_{\text{глаз}}$ находится в диапазоне 3,5–8 мм, $D_{\text{п.поле}}$ должен быть больше минимального размера зрачка глаза (3,5 мм). Это условие будет выполняться при $D_{\text{зер}} < 2,5$ мм.

Рисунок 4.5. Схема, иллюстрирующая соотношение углов $\alpha_{\text{м.ТИ}}$ и $\alpha_{\text{зер}}$.

Рисунок 4.6. Зависимости $D_{\text{п.поле}}$ от L_f при $k=\sqrt{2}$, $L_{\text{глаз}}=10$ мм.
Для обеспечения высокой плотности ТИ \((P) \) и попадания в глаз больше половины световой энергии всех ТИ, выберем диаметр зеркала \(D_{зер} \) равным 2,5 мм, минимальное расстояние \(L_{глаз} \) равным 10 мм (из-за физиологических ограничений) и фокусное расстояние зеркала \(L_f \) равным 8 мм. При этом относительное отверстие зеркала \(D_{зер}/L_f = 1/3.2 \). Тогда из (4.4) и (4.11) получим \(\alpha_{м.ти} = 11,27°, \quad \alpha_{зер} = 7,967°, \quad D_{м.ти} = 2L_f \tan(\alpha_{м.ти}/2) = 1,578 \text{ мм при } k = \sqrt{2} \). Определим плотность ТИ, которую может разрешать данная система.

Рисунок 4.7. Зависимости МПФ от пространственной частоты \(n \) матрицы ТИ для областей в центре матрицы в меридиональной (○) и сагиттальной (—) плоскостях и для области матрицы на конце ее диагонали в меридиональной (●) и сагиттальной (×) плоскостях. Отмечена частота \(\nu_{0,3} \), соответствующая контрасту 0.3.

Критерий допустимой плотности расположения ТИ найдем, положив минимальный контраст изображения матрицы ТИ равным 0,3 [76], что для среднестатистического глаза отвечает удовлетворительному качеству изображения:

\[
0.3 \leq \frac{I_{\text{мак}}-I_{\text{мин}}}{I_{\text{мак}}+I_{\text{мин}}}.
\]
(4.13)

Соответствующие зависимости модуляционной передаточной функции
(МПФ), или частотно-контрастной характеристики системы, представлены на рисунке 4.7. Виден уровень контраста построенного оптической системой изображения предметов, имеющих соответствующие пространственные частоты. Поскольку зеркальная система является осесимметричной, то достаточно проанализировать половину поля от нуля до \(\alpha_{\text{м.ти}}/2 \). Из рисунка 4.7 следует, что данная зеркальная система способна передать с контрастом 0,3 пространственные частоты до 30,5 точек/мм.

Тогда можно оценить угловую плотность ТИ в единичном угле для данного значения МПФ:

\[
P_{\text{ти}} = \frac{2 \nu_{0.3} D_{\text{м.ти}}}{\alpha_{\text{м.ти}}} = \frac{2 \times 30.5 \times 1.578}{11.27} = 8.54 \text{ точек/градус.} \quad (4.14)
\]

Кроме того, можно посчитать максимальную плотность ТИ \((N) \) на матрице ТИ для формирования виртуального изображения с контрастом 0,3 системой с полем зрения \(\alpha_{\text{м.ти}} \):

\[
N = 2 \nu_{0.3} = 2 \times 30.5 = 61 \text{ точек/мм.} \quad (4.15)
\]

Было исследовано также изменение разрешения оптической системы в зависимости от относительного отверстия и диаметра зеркала \(D_{\text{зер}} \) с целью выбора оптимальных параметров для данной схемы. Проанализированы плотность ТИ в единичном угле \(P_{\text{ти}} \) и максимальная плотность ТИ на матрице \(N \), которые можно разрешить с контрастом 0,3 в зависимости от относительного отверстия \(D_{\text{зер}}/L_f \) и диаметра зеркала (см. рисунок 4.8).

Как видно из рисунка 4.8, чем меньше \(D_{\text{зер}}/L_f \), тем больше \(P_{\text{ти}} \), т.e. тем большее количество ТИ может быть разрешено нашей системой. Для этого на матрице ТИ нужно установить ТИ с большей плотностью \(N \), но при этом длина системы возрастет. Отметим, что \(P_{\text{ти}} \) слабо зависит от \(D_{\text{зер}} \).

На рисунке 4.9 приведены схема и параметры для расчета энергии излучения ТИ, попадающей в глаз после отражения от зеркала.

Суммарную энергию излучения \(i \)-го ТИ, которое попадает в глаз, обозначаем как \(E_{\theta_2} \). Ее можно выразить в виде суммы энергий \(E_{1,i} \) и \(E_{2,i} \), излучаемых \(i \)-м ТИ.
под отрицательными и положительными углами к оси системы и попадающих в глаз.

Рисунок 4.8. Зависимости $v_{0.3}$ (а), $P_{\text{ти}}$ (б) и N (в) от $D_{\text{зер}}/L_f$, соответствующие контрасту изображения 0,3 на сетчатке при $k=\sqrt{2}$.

В предположении, что ТИ излучает световые пучки с ламбертовым распределением интенсивности ($I = I_0 \cos \theta$), $E_{\theta \Sigma}$ можно определить так:

$$E_{\theta \Sigma}(\alpha_{\text{ти},i}) = E_{1,i}(\alpha_{\text{ти},i}) + E_{2,i}(\alpha_{\text{ти},i}) = \int_{\theta_1}^{\theta_2} I_0 \cdot \cos(\theta) \, d\theta + \int_{\theta_1}^{\theta_2} I_0 \cdot \cos(\theta) \, d\theta,$$

где I_0 — интенсивность излучения ТИ при $q=0$.

Рисунок 4.9. Схема и параметры для расчета энергии излучения i-го ТИ, попадающего в зрачок. Углы $\theta_{1,2,i}$ образованы крайними лучами пучка излучения i-го ТИ, попадающими в зрачок. Индексы 1 и 2 обозначают соответственно
отрицательные и положительные углы относительно оси системы, серая область – часть пучка, виньетируемая зрачком.

Как видно из рисунка 4.9, при некоторых углах $\alpha_\text{ти,}\ i$ отраженный от зеркала пучок излучения виньетируется зрачком глаза. В результате на сетчатке формируется изображение с неравномерной освещенностью.

Рисунок 4.10. Зависимости от $\alpha_\text{ти,}\ i$ нормированных на E_{θ_Σ} энергий $E_{1,\ i}$, $E_{2,\ i}$ и E_{θ_Σ} при $D_{\text{глаз}}=4$ мм (a) и энергии E_{θ_Σ} при $D_{\text{глаз}}=3$, 4, 5 и 6 мм (b). Штриховыми линиями отмечены границы углов, соответствующих равномерной освещенности изображений.

На рисунке 4.10 (a) приведены зависимости от $\alpha_\text{ти,}\ i$ нормированных на E_{θ_Σ} энергий $E_{1,\ i}$, $E_{2,\ i}$ и их суммы E_{θ_Σ} при $D_{\text{глаз}}=4$ мм. В этом случае угловой размер $\alpha_\text{ти,}\ i$, соответствующий равномерному распределению освещенности изображения, составляет $\approx 2,3^\circ$. За пределами этого угла освещенность начинает падать. На рисунке 4.10 (b) показано, что размер области равномерной освещенности возрастает с увеличением $D_{\text{глаз}}$.

В результате исследования была промоделирована оптическая система со
следующими параметрами: $D_{глаз}=4$ мм, $D_{зер}=2,5$ мм, $L_{глаз}=10$ мм и $L_f=8$ мм (соответствует относительному отверстию $D_{зер}/L_f=0,32$). Из-за осевой симметрии системы достаточно проанализировать ее, рассматривая ход лучей только в горизонтальной и вертикальной плоскостях.

Рисунок 4.11. Схема многоточечных источников, показано по одному зеркалу 11×11 на вертикальной и горизонтальной осях: одно зеркало с пятью линиями источника излучения в качестве тестового источника (а); вид сбоку (показана только малая часть лучей) (б) и вид сзади (в).
Моделирование в программном пакете Zemax проводилось для системы зеркал, состоящей из 11 зеркал вдоль вертикальной и 11 зеркал вдоль горизонтальной осей, создающей поле зрения 87,67°=11 αзер (αзер =7,97°). В качестве тестовых источников излучения был взят набор из пяти излучающих прямоугольных полосок (см. рисунок 4.11).

На рисунке 4.12 представлено изображение тестовых источников на сетчатке модели глаза. Видно, что изображения, сформированные соседними зеркалами, оказываются «сшитыми».

Рисунок 4.12. Изображения тестовых источников на сетчатке глаза. Указаны максимальные углы падения лучей от ТИ на плоскость зрачка.

Моделирование показало, что при формировании каждым зеркалом растровой системы изображения нескольких ТИ можно увеличить по сравнению с первой схемой плотность ТИ в единичном угле в формируемом на сетчатке изображении. В частном случае, когда $D_зер/L_f=1/3,2, k=\sqrt{2}$, $L_f=8$ мм, $L_глаз=10$ мм, $D_зер=2,5$ мм, плотность ТИ достигает 8,54 точек/град, при этом $N=61$ точек/мм, что соответствует высокоразрешающим ПВМС, уже разработанным и выпускаемым промышленностью. По сравнению с первой схемой (один ТИ перед каждым зеркалом) разрешающая способность ВД, созданного по такой схеме, может быть
увеличена в 3,1 раза. При этом необходимо предусмотреть возможность коррекции яркости ТИ для обеспечения равномерной освещенности изображения. Как отмечено выше, освещенность каждого изображения ТИ на сетчатке меняется в зависимости от размера зрачка глаза. В связи с этим необходимо использовать систему слежения за размером зрачка, чтобы корректировать яркость соответствующих пикселей.

4.3 Схема «один точечный источник – одно зеркало», размещенная в контактной линзе

Рассмотрим еще один вариант построения схем ВД с растровой оптикой – это контактная линза, расположенная непосредственно на роговице глаза. Ряд электронных компаний разрабатывают системы с так называемой смарт-линзой [77-78]. В этих работах предложены схемы построения и многослойные структуры будущей «умной» контактной линзы, а также технология изготовления контактной линзы с базовыми элементами раstra [79].

Ясно, что одним из самых привлекательных свойств таких растровых схем является небольшой продольный размер (контактные линзы по определению не могут иметь толщину больше долей миллиметра). Поэтому в настоящей статье мы коротко рассмотрим возможность размещения растровой оптики в контактной линзе. Другой привлекательной чертой контактной линзы является ее расположение на оси глаза на минимально возможном расстоянии от зрачка. Она перемещается вместе с ним, и таким образом автоматически устраняется необходимость обеспечения большой ЗВВИ.

Типичные параметры контактной линзы таковы: диаметр $D_\text{кл} = 13–15\text{мм}$, радиус кривизны $R = 8,1–8,9 \text{ мм}$, отношение диаметра к толщине линзы $D_\text{кл}/t = 20–170$. Эти параметры определяются, с одной стороны, физиологией глаза человека (структурой, формой, чувствительностью склеры к наличию инородного предмета на поверхности и т.д.) и комфортностью (содержанием воды, проницаемостью для кислорода и т.д.) при ее использовании, с другой стороны – технологией
изготовления [73], [80-81].

Контактная линза является индивидуальной оптической системой. Каждому человеку необходимы линзы, параметры которых зависят от физиологических особенностей его глаза. В настоящей работе будет оценено возможное максимальное разрешение дисплеев на основе контактных линз для некоторых конкретных параметров линз.

Рисунок 4.13. Расположение зеркал и ход лучей в контактной линзе (а), а также глаз и контактная линза с элементом растровой системы и параметры модели (б).

Нами использовалась следующая модель (см. рисунок 4.13). В контактной линзе диаметром $D_{кл}$ выделена область диаметром $D_{кл,д}$, в которой находятся базовые элементы – растровые сферические зеркала с точечными источниками.

Определим максимальное поле зрения $\alpha_{мак}$, равное углу между лучами, проходящими через края зрачка и области, в которой размещены зеркала:

$$\alpha_{мак} = 2 \cdot \arctan\left(\frac{D_{кл,д} - D_{глаз}}{2(L_{кл} - s)}\right),$$

где s – стрелка прогиба части контактной линзы диаметром $D_{кл,д}$, в которой расположены элементы растровой системы.
Пучки, сформированные отдельными зеркалами, будут приходить к глазу под разными углами. Чем дальше зеркало находится от центра контактной линзы, тем под большим углом пучок, сформированный этим зеркалом, приходит к зрачку глаза. Начиная от оптической оси, зрачок разбит на $N_{зер} - 1$ равных отрезков длиной $\Delta d_i = d_i - d_{i-1} = \text{const}$, где $N_{зер}$ – количество зеркал (нечетное число); d_i – расстояние от границы i-го отрезка до центра зрачка глаза; i – целое число $(-(N_{зер} - 1)/2 \leq i \leq (N_{зер} - 1)/2)$; $d_0 = 0$. Оптические оси зеркальных базовых элементов, число которых равно $N_{зер}$, проходят через границу соответствующих отрезков. Оптическая ось центрального зеркала проходит через центр зрачка, оптическая ось следующего зеркала – через границу первого отрезка и т.д., так что углы между осями соседних зеркал равны: $\alpha_{зер} = \alpha_i - \alpha_{i-1} = \alpha_{макс}/(N_{зер} - 1)$. Здесь α_i – угол между осями контактной линзы и i-го зеркала.

Диаметр зеркала в контактной линзе $D_{зер}$ зависит от количества зеркал $N_{зер}$ (см. рисунок 4.14 (а)). Для получения высокого разрешения ВД нужно максимально увеличить $N_{зер}$, т.е. уменьшить $D_{зер}$. Однако с уменьшением диаметра зеркала увеличивается расходимость светового пучка из-за дифракции на зеркале. Если оценить максимальное разрешение так же, как и в случае первой схемы, т.е. по критерию Рэлея (8) с учетом показателя преломления контактной линзы ($n=1.5$), то можно получить максимальное разрешение для данной контактной линзы. Оно равно двум точкам на градус ($1/\alpha_{зер} = 1/0.48 \approx 2$ точки/град) (см. рисунок 4.14 (б)).

Рассмотренная модель контактной линзы для виртуального дисплея позволяет сделать несколько выводов. В частности, для уменьшения дифракции на апертуре зеркала при отражении желательно, чтобы диаметр зеркала был не менее 53 мкм. В этом случае, согласно рисунку 4.14 (б), количество ТИ, которое можно воспроизвести и разрешить глазом, составляет примерно по 156 в горизонтальной и вертикальной плоскостях в максимальном поле зрения $\alpha_{макс}=74^\circ$. Это означает, что можно построить виртуальное изображение с разрешением 2 точки/град при
диаметре зрачка глаза \(D_{\text{глаз}} = 4 \) мм, диаметре контактной линзы с растровыми элементами \(D_{\text{кл.з}} = 8 \) мм и радиусе кривизны поверхности контактной линзы \(R = 8,5 \) мм.

Рисунок 4.14. Зависимость \(N_{\text{зер}} \) от \(D_{\text{зер}} \) при \(D_{\text{глаз}} = 4 \) мм, \(D_{\text{кл.з}} = 8 \) мм, \(R = 8,5 \) мм \((a)\), а также зависимость \(\alpha_{\text{зер}} \) от \(D_{\text{зер}} \) при тех же значениях параметров.

Закрашена область, в которой \(\alpha_{\text{зер}} \) и \(D_{\text{зер}} \) удовлетворяют условию \((4.8)\) \((b)\).

Вывод по главе 4

Рассмотрены три схемы построения растровых виртуальных дисплеев. Для первой схемы, когда каждое зеркало дисплея строит виртуальное изображение только одного ТИ, показано, что плотность ТИ (максимальное разрешение) может достигать 3 точки/град в довольно большом поле зрения (~180°).

Вторая схема использует одно изображающее зеркало для формирования части поля виртуального изображения, а плотность ТИ составляет 8,54 точек/град в большом поле зрения (~180°).

Третья схема аналогична первой схеме, только оптическая система находится не в воздухе, а иммерсирована к роговице глаза. С использованием подобной системы можно достичь плотности ТИ до 2 точек/град в максимальном поле зрения 74°. Эта схема уникальна тем, что в ней отсутствует требование к ЗВВИ,
которое является слабым местом в растровых системах для ВД.

Подобные рассмотренным варианты разрабатываемых виртуальных дисплеев во многих случаях могут оказаться не подходящими для формирования высокоразрешающего виртуального изображения. Однако ряд положительных свойств у этих схем все-таки есть. Они будут полезны в качестве дисплеев виртуальной и дополненной реальностей в индикаторных и навигационных системах, где формируемое виртуальное изображение не должно сливаться с окружающим пространством. Продольный размер дисплеев такого типа будет очень малым, а угол зрения виртуального изображения, наоборот, довольно большим.
Основные результаты:
1. Разработана методика расчета требуемой величины зоны видения виртуального изображения в зависимости от поля зрения виртуального изображения с учетом физиологических особенностей глаза человека, что позволило сформулировать физически обоснованные требования к оптическим системам ВД;
2. Разработана и изготовлена волноводная система, собраны экспериментальная установка и макет дисплея. Результаты экспериментов показали, что разработанный дисплей формирует поле зрения 14°. Описан способ оптимизации ввода и вывода изображения в волноводах неравномерной толщины для передачи виртуального изображения.
3. Предложена новая конструкция выводящего элемента — «ступенчатая микрозеркальная структура», предназначенная для вывода излучения из волновода. Такой подход позволил увеличить ЗВВИ на относительно большом расстоянии от глаза наблюдателя, что невозможно обеспечить классическим волноводом с одной наклонной поверхностью при постоянной толщине волновода. В результате был изготовлен прототип волноводной системы из пластики РММА, которая позволила увеличить ЗВВИ до 9мм на расстоянии 19мм, что возможно обеспечить классическим волноводом только при увеличении размера выводящего элемента в 2,3 раза, увеличивая толщину волновода в 2,3 раз.
4. Разработана методика расчета максимального углового разрешения растровых оптических систем. С ее помощью оценено максимальное угловое разрешение с контрастом изображения 0,3 для установления физических ограничений разрешения при использовании раstra.
5. Показано, что широкоапертурная оптическая система на основе раstra позволяет уменьшить габариты системы ВД, однако существует ряд ограничений: максимальное разрешение ограничено дифракцией от базового элемента раstra и размер ЗВВИ не превышает размера базового элемента раstra.
Основные выводы:

В диссертационной работе разработаны малогабаритные волноводная и растрвая оптическая системы для виртуального дисплея. У каждой системы существуют свои преимущества и недостатки:

а) Волноводная оптическая система позволяет существенно уменьшить габариты устройства ВД, но ограничивает поле зрения, которое можно передать через волновод, причем конструкция вводящего и выводящего элементов играют определяющую роль при передаче ВИ;

б) Растровая система позволяет формировать ВИ с большим полем зрения, но возникают ограничения в угловом разрешении и размере зоны видения виртуального изображения.

В связи с этим, волноводная система подходит для формирования виртуального изображения с малым полем зрения, но с высоким разрешением, а растровая система - для формирования виртуального изображения с большим полем зрения, но с низким разрешением. Таким образом, виртуальные дисплеи с волноводными системами целесообразно использовать для получения изображений с высоким пространственным разрешением, где требуется высокая детализация как, к примеру, видео и рисунки. Виртуальные дисплеи с растровыми системами целесообразно применять для отображения текстовой информации, где не требуется высокого разрешения. Причем обе системы позволяют создавать виртуальное изображение с размерами больше, чем характерный размер самого устройства.
Благодарности

Мне бы хотелось выразить свою благодарность людям, которые поддерживали меня в сложные моменты написания данной работы и сделали так, что я смог довести эту работу до конца.

- Прежде всего, выражаю свою безмерную благодарность моему научному руководителю, ставшего моим «русским отцом», терпеливо передавшим мне свой опыт и навыки, человеку, изменившего мою точку зрения на оптику: Путилину Андрею Николаевичу.

- За теплое дружеское отношение, помощь в учебных и организационных вопросах, за искреннюю поддержку, и не только, я бы хотел поблагодарить:
 - Савинова Сергея Юрьевича,
 - Пестовского Николая Валерьевича,
 - Луиса Альберто Гутьеррес Вальядареса.

- Дорогих коллег, ставших моей «русской семьёй», за их участие в плодотворных дискуссиях, и совместную работу, с невероятным терпением в приятной дружеской атмосфере я бы хотел выразить свою благодарность моим коллегам:
 - Муравьёву Николаю Викторовичу,
 - Попову Михаилу Вячеславовичу,
 - Пискунову Дмитрию Евгеньевичу,
 - Штыкову Станиславу Александровичу,
 - Перчику Алексею Вячеславовичу.

- Я бы хотел выразить особую благодарность человеку, давшего мне много советов в каждом моменте оформления этой работы, а также помощь в
формулировках мысли, задачи, решения, и не только, а также поддержавшего меня морально:
- Кутузе Игорю Борисовичу.

- Особенно хотелось бы отметить поддержку оптического общества им. Д.С. Рождественского, в лице его директора:
 - Арпишкина Владимира Михайловича.

- Я чрезвычайно благодарен людям, выделившим невероятно много времени на тщательную редакцию статьи:
 - Маслов Александр Иванович,
 - Чайков Леонид Леонидович,
 - Марьина Лазаревна

- За многократные дискуссии, обсуждение физико-технических явлений и теплое отношение, благодарю:
 - Капенкина Серег Сергейевича,
 - Бородина Юрия Петровича.

- Также благодарю за помощь по улучшению моего понимания значимости моей работы и поддержку
 - Кампанеца Игоря Николаевича.
Список литературы

[37] Äyräs P., Saarikko P. Near-to-eye display based on retinal scanning and a diffractive
exit-pupil expander //Optics, Photonics, and Digital Technologies for Multimedia Applications. – International Society for Optics and Photonics, 2010. Vol. 7723. C. 77230V.

[49] Helbing R., Gruhlke R. Compact optical navigation module and microlens array
therefore: заяв. пат. 11350023 США. 2007.

