Fast and efficient modeling of metallic gratings diffraction with metric sources

A.A. Shcherbakov,1 A.V. Tishchenko,2

1Moscow Institute of Physics and Technology, Laboratory of Nanooptics and Plasmonics, Dolgoprudnyi, 141707, Russia
2University Jean Monnet (member of the University of Lyon), Laboratory Hubert Curien, Saint-Etienne, 42100, France
email: alex.shcherbakov@phystech.edu

EOSAM 2014, 18 September, Berlin Adlershof
Outline

• Grating diffraction: Fourier space methods
• Curvilinear space
• Generalized Source Method (GSM)
• Generalized Metric Sources concept
• Method capabilities
• Conclusions

Linear diffraction on a periodic corrugation interface
Grating diffraction: Fourier space methods

Cartesian space:

- Fourier-Modal Method (RCWA)
- Differential Method
- Generalized Source Method

Curvilinear space:

- Chandezon Method
- FMM with coordinate transform

Most suitable problems:

- dielectric, vertical walls or index gratings
- dielectric complex shape gratings
- metallic, smooth profile
- metallic, vertical walls
Grating diffraction: Fourier space methods

Cartesian space:
• Fourier-Modal Method (RCWA) \(O(N^3) \)
• Differential Method \(O(N^3) \)
• Generalized Source Method \(O(N\log N) \)

Curvilinear space:
• Chandezon Method \(O(N^3) \)
• FMM with coordinate transform \(O(N^3) \)

\(O(N\log N) \) method for complex corrugated metallic gratings?
Curvilinear space

Periodic corrugation treatment:

Fourier harmonics

GSM, FMM: slicing approximation in Cartesian coordinates

C-method: slicing approximation in curvilinear coordinates
 - only single-valued profile functions;
 - similar transformation in the whole 2D/3D space.

EOSAM 2014, 18 September, Berlin Adlershof
Curvilinear space

KEY IDEA: transform only in a bounded region

Cartesian space region →

Curvilinear space region →

Cartesian space region →

Curvilinear coordinates continuously become Cartesian at interfaces of the grating region.

Slicing in curvilinear coordinates in a bounded region

EOSAM 2014, 18 September, Berlin Adlershof
Generalized Source Method

Diffraction or scattering problem

Basis medium + basis analytic solution

Difference between initial and basis media gives rise to the generalized sources

\[\mathbf{E}(\mathbf{r}) \]
\[\nabla \times \mathbf{E} = i \omega \mu_0 \mathbf{H} \]
\[\nabla \times \mathbf{H} = \mathbf{j} - i \omega \varepsilon \mathbf{E} \]
\[\mathbf{E}_b(\mathbf{r}) \]
\[\nabla \times \mathbf{E} = i \omega \mu_0 \mathbf{H} \]
\[\nabla \times \mathbf{H} = -i \omega \varepsilon_b \mathbf{E} \]
\[\mathbf{j}_{gen} = -i \omega (\varepsilon - \varepsilon_b) \mathbf{E} \]

• Implicit linear equation: \[\mathbf{E} = \mathbf{E}_{inc} + \chi (\mathbf{E} - \varepsilon B) \]
• Discretization: Fourier space + Slicing
• GMRES+FFT assisted solution of the resulting algebraic system in \(O(N\log N)\) time and \(O(N)\) memory resort.

EOSAM 2014, 18 September, Berlin Adlershof
Maxwell’s equations
\[\nabla \times \vec{E} = -\vec{M} + i\omega \mu_0 \vec{H} \]
\[\nabla \times \vec{H} = \vec{J} - i\omega \varepsilon \vec{E} \]
in a curvilinear space become
\[\xi^{\alpha\beta\gamma} \partial_\beta E_\gamma = -M^\alpha + i\omega \mu_0 \sqrt{g} g^{\alpha\beta} H_\beta \]
\[\xi^{\alpha\beta\gamma} \partial_\beta H_\gamma = J^\alpha - i\omega \varepsilon \sqrt{g} g^{\alpha\beta} E_\beta \]

In accordance with the GSM rationale we split equations into a basis part
\[\xi^{\alpha\beta\gamma} \partial_\beta E_\gamma = i\omega \mu_0 \delta^{\alpha\beta} H_\beta \]
\[\xi^{\alpha\beta\gamma} \partial_\beta H_\gamma = -i\omega \varepsilon_b \delta^{\alpha\beta} E_\beta \]
and Generalized Metric Sources
\[M^\alpha = -i\omega \mu_0 (\sqrt{g} g^{\alpha\beta} - \delta^{\alpha\beta}) H_\beta \]
\[J^\alpha = -i\omega \varepsilon_b (\sqrt{g} g^{\alpha\beta} - \delta^{\alpha\beta}) E_\beta \]

Coordinate transformation in a grating region
\[q^i = q^i(x_1, x_2, x_3) \]
Fields are transformed via metric tensor:
\[g^{\alpha\beta} = \sum_\gamma \frac{\partial q^\alpha}{\partial x_\gamma} \frac{\partial q^\beta}{\partial x_\gamma}, g = \det(g_{\alpha\beta}) \]
Generalized Metric Sources concept

Basis part:

\[\zeta^{\alpha\beta\gamma} \partial_\beta E_\gamma = i\omega \mu_0 \delta^{\alpha\beta} H_\beta, \quad \nabla \times \vec{E} = i\omega \mu_0 \vec{H} \]
\[\zeta^{\alpha\beta\gamma} \partial_\beta H_\gamma = -i\omega \varepsilon_b \delta^{\alpha\beta} E_\beta, \quad \nabla \times \vec{H} = -i\omega \varepsilon_b \vec{E} \]

is similar to the Maxwell’s equations in Cartesian metric, and continuously become the Maxwell’s equations at grating region boundaries

Generalized Metric Sources

\[M^\alpha = -i\omega \mu_0 (\sqrt{g} g^{\alpha\beta} - \delta^{\alpha\beta}) H_\beta \]
\[J^\alpha = -i\omega \varepsilon_b (\sqrt{g} g^{\alpha\beta} - \delta^{\alpha\beta}) E_\beta \]
Method capabilities

✓ Smooth profile gratings;
✓ Vertical wall gratings;
✓ “Overhanging” gratings;
✓ Multilayer periodic structures with different layer shapes;
✓ ...

EOSAM 2014, 18 September, Berlin Adlershof
Method capabilities

Convergence example:

- convergence is similar for both metallic and dielectric gratings;
- convergence over slice number is polynomial and can be significantly increased by use of the second order Richardson extrapolation;
- convergence over diffraction order number is obtained by taking the best solutions from the convergence over slice number.

EOSAM 2014, 18 September, Berlin Adlershof
Method capabilities

Convergence example:

- Convergence is similar for both metallic and dielectric gratings;
- Convergence over slice number is polynomial and can be significantly increased by use of the second order Richardson extrapolation;
- Convergence over diffraction order number is obtained by taking the best solutions from the convergence over slice number.
0-th order reflection and transmission efficiencies depending on two grating periods for diffraction of a plane wave at wavelength $0.6328 \, \mu m$ under 10° incidence on a gold sinusoidal grating of depth $0.05 \, \mu m$.

Conclusions

✓ Computationally and memory efficient (linear time complexity and memory requirements) volume integral curvilinear coordinate Fourier space method for grating diffraction simulation.

✓ Both metallic and dielectric gratings: similar convergence.

✓ High accuracy achievable

✓ No implicit use of the Rayleigh hypothesis: no restrictions for grating shapes and depths.

✓ Possible to use parallel GPU-enabled computations: about 50 times faster diffraction simulation.
Thank you

Acknowledgements:
The work was supported in part by the Russian Ministry of Education and Science (program STop100), and the Russian Foundation for Basic Research (grant # NK 14-07-31352\14)