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В работе рассматривается задача выбора структуры модели автокодировщика. Под
автокодировщиком понимается дифференцируемая по параметрам модель, представи-
мая в виде композиции двух функций: кодировщика, представляющего входной объект
в виде скрытого векторного представления, и декодировщика, преобразующего скры-
тое векторное представление в исходное признаковое пространство. Структура модели
автокодировщика представляется в виде набора гиперпараметров, для выбора которых
предлагается применять методы байесовской оптимизации. Предлагается двухэтапная
модификация метода байесовской оптимизации: на каждой итерации поиска выбирает-
ся множество точек с наилучшей оценкой качества модели, а затем из них отбирается
наилучший с учетом динамики обучения. Приводится теоретическое обоснование ал-
горитма, а эксперименты на выборках CIFAR и Fashion-MNIST подтверждают эффек-
тивность предложенного подхода.
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The paper considers the problem of the structure selection for autoencoder model. An
autoencoder is a model differentiable by parameters, represented as a composition of two
functions: an encoder representing the input object as a latent vector representation, and a
decoder transforming the latent vector representation into the original feature space. The
structure of the autoencoder model is represented as a set of hyperparameters, for the
selection of which it is proposed to apply Bayesian optimization methods. A two-stage
modification of the Bayesian optimization method is proposed: at each search iteration, a
set of points with the best estimate of the model quality is selected, and then the best one is
selected from them taking into account the dynamics of training. The theoretical justification
of the algorithm is given, and experiments on CIFAR and Fashion-MNIST samples confirm
the effectiveness of the proposed approach.
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1. Введение

Оптимизация архитектуры и гиперпараметров автокодировщиков остается важной и
сложной задачей в области машинного обучения. Под автокодировщиком понимается ней-
ронная сеть, состоящая из двух частей — кодировщика и декодировщика, которая использу-
ется для обучения эффективных представлений данных без учителя. В фундаментальном
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исследовании трудностей обучения глубоких сетей [1] было показано, что выбор гипер-
параметров существенно влияет на качество работы модели. Для автокодировщиков эта
проблема особенно актуальна, поскольку качество получившихся сжатых представлений
сильно зависит от выбранной структуры сети, характеризующейся количеством слоев и их
параметрами, размером скрытого представления и другими.

Ранее было предложено несколько специализированных методов оптимизации гипер-
параметров глубоких сетей. Например, был разработан алгоритм поиска архитектуры на
основе мета-обучения [2], а также для этой задачи были адаптированы [25] древовидные
структуры Парзена и разработан подход [4], использующий экстраполяцию кривых обуче-
ния для предсказания конечного качества модели. Однако эти методы либо требуют зна-
чительных вычислительных ресурсов, либо не учитывают важные особенности динамики
обучения конкретных моделей, например, автокодировщиков.

Классические методы оптимизации гиперпараметров, такие как полный перебор [5] и
случайный поиск [16], демонстрируют ограниченную эффективность при работе с больши-
ми пространствами гиперпараметров. Более перспективным направлением стала байесов-
ская оптимизация [7], которая строит вероятностную модель целевой функции. Развитие
этого подхода привело к созданию различных модификаций, включая гауссовские процес-
сы [8] и методы на основе древовидных структур [25].

Несмотря на значительный прогресс в области байесовской оптимизации и нейроархи-
тектурного поиска (NAS) [11], существующие методы имеют несколько принципиальных
ограничений применительно к задаче настройки автокодировщиков. Во-первых, большин-
ство подходов, включая современные методы NAS [12], разрабатывались преимущественно
для однонаправленных архитектур и не учитывают специфику двунаправленной структу-
ры автокодировщиков [13]. Во-вторых, традиционные методы требуют полного обучения
модели для точной оценки качества, что вычислительно дорого для глубоких автокоди-
ровщиков. В-третьих, они не учитывают динамику изменения функции потерь на ранних
этапах обучения, которая содержит важную информацию о потенциальном качестве моде-
ли [14]. Следует отметить, что существуют альтернативные подходы к оптимизации архи-
тектур автокодировщиков, такие как эволюционные алгоритмы [23], однако они требуют
значительных вычислительных ресурсов и не обеспечивают теоретических гарантий схо-
димости.

В нашей работе предлагается новый метод байесовской оптимизации, специально раз-
работанный для настройки гиперпараметров автокодировщиков. Данный подход сочетает
двухэтапный отбор кандидатов с анализом динамики обучения на ранних итерациях. На
первом этапе отбирается множество перспективных наборов гиперпараметров, на втором —
производится их уточнение на основе признаков, извлекаемых после одной эпохи обучения.

Эксперименты на стандартных наборах данных CIFAR [9] и Fashion-MNIST [10] 1 пока-
зывают, что предложенный метод превосходит по эффективности базовые подходы байесов-
ской оптимизации для автоэнкодера. В частности, предлагаемый алгоритм демонстрирует
более быструю сходимость и позволяет экономить до 60% вычислительных ресурсов при со-
хранении качества результатов. Эти преимущества особенно важны для практических при-
менений, где требуется частая настройка гиперпараметров автокодировщиков в условиях
ограниченных ресурсов. Основной вклад работы заключается в разработке специализиро-
ванного алгоритма оптимизации гиперпараметров автокодировщиков, его теоретического
обоснования, а также экспериментального подтверждения эффективности на стандартных
наборах данных.

2. Постановка задачи

В данной работе рассматривается задача выбора гиперпараметров модели автокоди-
ровщика, задающих его структуру. Пусть задана выборка X ⊂ R𝑛, где R𝑛 — признако-

1Исходный код экспериментов доступен в репозитории https://github.com/intsystems/BHPO-AE
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вое пространство. Выборка разделена на обучающую часть Xtrain и валидационную часть
Xvalid. Обучающая часть выборки Xtrain используется для оптимизации параметров авто-
кодировщика, а валидационная часть Xvalid, размера𝑀 , для выбора гиперпараметров. Под
автокодировщиком понимается параметризованная модель 𝑓h, заданная композицией двух
отображений:

𝑓h(w) = fdh𝑑(w
d) ∘ f eh(we) : R𝑛 → R𝑛,

где f e : R𝑛 → R𝑚 — кодировщик с параметрами w𝑒 и структурой, задаваемой векто-
ром гиперпараметров h𝑒, f

d : R𝑚 → R𝑛 — декодировщик с параметрами w𝑑 и структу-
рой, задаваемой вектором гиперпараметров h𝑑, R𝑚 — скрытое пространство (𝑚 ≪ 𝑛).
Оптимизационная задача для базовой модели автокодировщика выглядит следующим об-
разом:

𝐿(h) =
∑︁

x∈Xtrain

||fh(x)− x||22 → min
w∈R𝑢

,

где w — вектор параметров автокодировщика, образованный конкатенацией векторов w𝑒 и
w𝑑, h — вектор гиперпараметров, образованный конкатенацией векторов h𝑒 и h𝑑. Заметим,
что к модификациям базовой модели автокодировщика относятся также порождающие
модели различных классов, включая вариационные автокодировщики [25] и диффузионные
модели [26].

Задача оптимизации гиперпараметров формулируется как задача выбора вектора ги-
перпараметров h* ∈ H, минимизирующего целевую функцию 𝐿(h) для валидационной вы-
борки Xvalid, характеризующую качество работы модели на данных. Здесь H представляет
пространство допустимых гиперпараметров, которое может включать как непрерывные,
например, скорость обучения, так и дискретные параметры, например, количество слоёв.

Ключевая сложность задачи заключается в том, что функция 𝐿(h) не имеет аналитиче-
ского выражения, а её оценка требует дорогостоящей процедуры обучения модели. Кроме
того, 𝐿(h) в общем случае является невыпуклой, многоэкстремальной и может содержать
шум, связанный со стохастичностью обучения. Эти свойства исключают применение базо-
вых методов оптимизации и требуют специальных подходов.

2.1. Байесовский выбор гиперпараметров

В рамках байесовского подхода задача оптимизации гиперпараметров модели форму-
лируется как задача нахождения апостериорного распределения:

𝑝(h|Xvalid) =
𝑝(Xvalid|h)𝑝(h)

𝑝(Xvalid)
,

где 𝑝(h) — априорное распределение, 𝑝(Xvalid|h) — правдоподобие данных, 𝑝(Xvalid) — мар-
гинальное правдоподобие.

Оптимальные гиперпараметры находятся как:

h* = argmaxh∈H𝑝(h|Xvalid).

На практике прямое вычисление апостериорного распределения затруднительно, поэто-
му используются различные методы аппроксимации, включая методы Монте-Карло [15] и
суррогатные модели [16]. Для оценки плотности многомерной величины 𝑝(h|Xvalid) приме-
няется ядерная оценка плотности KDE [25], которая позволяет аппроксимировать распре-
деление 𝑝(h|Xvalid) без строгих предположений о его форме. Для выборки {hi}𝑛𝑖=1 оценка
плотности имеет вид

𝑝(h) =
1

𝑛𝑤ℎ

𝑛∑︁
𝑖=1

K

(︂
h− h𝑖

𝑤

)︂
,
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где K : Rℎ → R+ — ядерная функция (обычно гауссова), 𝑤 > 0 — ширина окна, ℎ —
размерность пространства гиперпараметров. KDE находит применение как для построения
априорных распределений, так и для анализа пространства гиперпараметров [17].

Основные преимущества KDE в контексте байесовской оптимизации включают непара-
метрический характер оценки и способность адаптироваться к сложным многомодальным
распределениям, что особенно важно при работе с нерегулярными пространствами гипер-
параметров.

2.2. Метод Tree-structured Parzen Estimator (TPE)

В контексте байесовской оптимизации с использованием KDE возникает ключевая про-
блема: традиционные методы оценивают единое распределение 𝑝(h|Xvalid), что может быть
неэффективно для многоэкстремальных функций. Метод Tree-structured Parzen Estimator
(TPE) [25] формулирует задачу оптимизации гиперпараметров в терминах условных веро-
ятностей. В отличие от стандартного байесовского подхода, TPE строит раздельные распре-
деления для векторов гиперпараметров с низким значением функции потерь и с высоким.
Пусть 𝛾 — квантиль, разделяющий наблюдения на две группы: 𝑆+ = {h𝑖|𝐿(h𝑖) ≤ 𝐿𝛾} и
𝑆− = {h𝑖|𝐿(h𝑖) > 𝐿𝛾}. Алгоритм моделирует распределения:

𝑝(h|𝐿) =

{︃
𝑝+(h) = 1

|𝑆+|
∑︀

h𝑖∈𝑆+ K(h,h𝑖) если 𝐿(h) ≤ 𝐿𝛾 ,

𝑝−(h) = 1
|𝑆−|

∑︀
h𝑖∈𝑆− K(h,h𝑖) иначе,

где K — ядерная функция. Оптимальная следующая точка выбирается по критерию
Expected Improvement:

h𝑛𝑒𝑤 = argmaxh𝐸𝐼(h) = argmaxh
𝑝+(h)

𝑝−(h)
. (1)

Это позволяет эффективно балансировать между исследованием новых областей и
уточнением уже найденных перспективных наборов гиперпараметров.

3. Предлагаемый метод

В данном разделе представлен новый алгоритм байесовского выбора гиперпараметров
автокодировщиков, сочетающий идеи стохастической оптимизации и слабоконтролируемо-
го обучения [18]. Метод основан на двухэтапной процедуре, где сначала отбираются кан-
дидаты для старта обучения, а затем по первым эпохам определяется лучший вариант
для полного обучения. Основной вклад заключается в использовании промежуточных по-
казателей после короткого обучения моделей-кандидатов, что позволяет сократить общие
вычислительные затраты по сравнению с базовым подходом.

3.1. Описание метода

Предлагаемый метод решает ключевую проблему традиционных подходов к подбору
гиперпараметров — необходимость полного обучения множества моделей-кандидатов перед
принятием решения об их качестве. Вместо этого мы предлагаем адаптивную стратегию,
где решение о перспективности тех или иных гиперпараметров принимается на основе их
поведения после ограниченного числа шагов обучения.

Основная гипотеза, лежащая в основе метода, заключается в том, что динамика из-
менения функции потерь на ранних этапах обучения содержит достаточно информации
для прогнозирования конечного качества модели. Это позволяет существенно сократить
вычислительные затраты, избегая полного обучения заведомо неперспективных наборов
гиперпараметров.
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Пусть задано пространство гиперпараметров H ⊂ Rℎ и функция потерь 𝐿(h, 𝑇 ), оцени-
вающая качество модели после 𝑇 эпох. Для каждого кандидата h вычисляются динамиче-
ские признаки û = u(h, 𝑘) ∈ R𝑠 после 𝑘 ≪ 𝑇 эпох обучения. Метод решает задачу:

h* = argminh∈H𝐸[𝐿(h, 𝑇 )]

с ограничениями на вычислительный бюджет и частичное обучение (Алгоритм 1).
Ключевая гипотеза заключается в том, что динамика изменения 𝐿 на ранних этапах со-
держит информацию для прогнозирования конечного качества, что позволяет избегать
полного обучения моделей с бесперспективными наборами гиперпараметров.

Алгоритм 1 Двухэтапный выбор гиперпараметров с раширенным признаковым простран-
ством

Require:

H — пространство гиперпараметров
𝑙 — число кандидатов на итерацию
𝑛 — число эпох частичного обучения
𝐿 — функция потерь
u — функция вычисления признаков

Ensure:

h* — оптимальные гиперпараметры
1: Инициализация:

2: Генерировать начальную популяцию {h𝑖}𝑁𝑖=1 ∼ 𝑝0(h)
3: for 𝑖 = 1 . . . 𝑁 do

4: Обучать модель с h𝑖 в течение 𝑛 эпох, получить 𝐿𝑖

5: Вычислить признаки ûi = u(h𝑖, 𝐿𝑖)
6: end for

7: Построить TPE 𝑝(h, û|𝐿)
8: Основной цикл:

9: while критерий останова не достигнут do
10: Отбор кандидатов:

11: Выбрать 𝑙 точек {h𝑗}𝑙𝑗=1 из argmaxh𝑝(h, û|𝐿)
12: Частичное обучение:

13: for 𝑗 = 1 . . . 𝑙 do
14: Обучить модель h𝑗 на 𝑛 эпох
15: Обновить 𝐿𝑗 , вычислить ûj

16: end for

17: Обновление модели:

18: Пересчитать 𝑝(h, û|𝐿) на основе расширенного пространства признаков
19: Выбрать h* = argminh

∑︀
𝑋

[𝐿|h, û]

20: end while

21: Возврат: h*

Таким образом, предложенный алгоритм подбора гиперпараметров, легко встраивается
в существующие методы путем повторного вызова метода ранжирования объектов, напри-
мер, TPE. Это делает его гибким с точки зрения использования.

3.2. Анализ предложенного метода

Рассмотрим задачу байесовской оптимизации гиперпараметров модели, где целью яв-
ляется нахождение значений h ∈ H, минимизирующей итоговую функцию потерь 𝐿(h).
Предположим, что к каждому набору гиперпараметров h могут быть сопоставлены
два типа признаков: znaive(h) — базовые признаки (например, сами гиперпараметры) и
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zhybrid(h) = (znaive(h),gh) — расширенные признаки, включающие информацию gh, полу-
ченную после частичного обучения модели на 𝑘 эпох (например, промежуточное значение
функции потерь, темп сходимости и др.).

Пусть на базе этих признаков строятся ядерные оценки плотности 𝑝up(h) и 𝑝down(h)
— оценки плотности элементов с низким (top-25%) и высоким (bottom-75%) значением
функции потерь соответственно, а за функцию ранжирования примем EI (1).

Обозначим:

𝑅naive(h) =
𝑝naiveup (h)

𝑝naivedown(h)
, 𝑅hybrid(h) =

𝑝hybridup (h)

𝑝hybriddown (h)
,

где плотности вычислены по соответствующим признакам.
Теорема (об асимптотическом неухудшении ранжирования при расширении статисти-

ки)
Пусть для h ∈ H даны 𝑇1 = znaive(h) — базовые признаки и 𝑇2 = (znaive(h),gh) —

расширенные признаки, где gh — результат частичного обучения.
Разобьём множество моделей на два класса:

𝑈 = {𝐿(h) в top-25%}, 𝐵 = {𝐿(h) в bottom-75%}.

Определим для 𝑖 ∈ {naive, hybrid}

𝑅𝑖(h) =
𝑝
(𝑖)
up(h)

𝑝
(𝑖)
down(h)

,

где плотности 𝑝
(𝑖)
up и 𝑝

(𝑖)
down оцениваются по 𝑇𝑖 с помощью KDE.

Если 𝑀 →∞ и выполняются стандартные условия консистентности KDE (𝑀 →∞
и стандартных условиях [28] на гладкость, ℎ𝑀 → 0 и 𝑀ℎ𝑑𝑀 → ∞), то для любых
h1,h2 ∈ H с 𝐿(h1) < 𝐿(h2):

𝑝
(︀
𝑅hybrid(h1) > 𝑅hybrid(h2)

⃒⃒
𝐿(h1) < 𝐿(h2)

)︀
⩾ 𝑝

(︀
𝑅naive(h1) > 𝑅naive(h2)

⃒⃒
𝐿(h1) < 𝐿(h2)

)︀
.

Доказательство:

При выполнении стандартных условий консистентности KDE:

𝑝(𝑖)up(𝑡)
п.н.−−→ 𝑝(𝑡 | 𝑈), 𝑝

(𝑖)
down(𝑡)

п.н.−−→ 𝑝(𝑡 | 𝐵).

Следовательно, 𝑅̂𝑖 → 𝑅*
𝑖 .

По построению 𝑇1 проекция 𝑇2: 𝑇1 = 𝜋(𝑇2), поэтому из неравенства обработки инфор-
мации [27]:

𝐼(𝐿;𝑇2) ⩾ 𝐼(𝐿;𝑇1).

Если записать взаимную информацию через энтропии:

𝐼(𝐿;𝑇𝑖) = 𝐻(𝐿)−𝐻(𝐿 | 𝑇𝑖) ⇒ 𝐻(𝐿 | 𝑇2) ⩽ 𝐻(𝐿 | 𝑇1).

Значит, 𝑇2 даёт не меньшую апостериорную определённость о 𝐿, чем 𝑇1.
Рассмотрим задачу попарной классификации: для фиксированной пары h1,h2 опреде-

лим бинарную метку:

𝑌 =

{︃
1, 𝐿(h1) < 𝐿(h2),

0, иначе.

Байесовский классификатор по 𝑇𝑖 минимизирует риск 𝑝(𝑌 ̸= 𝑌 ) и основан на тесте отно-

шения правдоподобий 𝑝(𝑌=1|𝑇𝑖)
𝑝(𝑌=0|𝑇𝑖)

.

Так как 𝑇2 информативнее (𝐻(𝐿 | 𝑇2) ⩽ 𝐻(𝐿 | 𝑇1)), минимальный риск при 𝑇2 не
больше, чем при 𝑇1 [27]. Значит, вероятность правильного решения 𝑝(𝑌 = 𝑌 ) при 𝑇2 не
меньше.
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Наконец, при 𝑀 → ∞ KDE-оценки сходятся к истинным плотностям. Поэтому про-
цедурa, использующая 𝑅̂𝑖, реализует оптимальный байесовский классификатор на 𝑇𝑖.
Следовательно, в пределе вероятность корректного ранжирования, реализуемая практи-
ческой процедурой на основе 𝑇2 (то есть 𝑅hybrid), не меньше, чем у процедуры на основе
𝑇1 (то есть 𝑅naive). Это формально даёт требуемое неравенство:

𝑝
(︀
𝑅hybrid(h1) > 𝑅hybrid(h2) | 𝐿(h1) < 𝐿(h2)

)︀
⩾ 𝑝

(︀
𝑅naive(h1) > 𝑅naive(h2) | 𝐿(h1) < 𝐿(h2)

)︀
.

Замечание (о чувствительности к выбору признаков): Эффективность метода
существенно зависит от информативности используемых признаков û. На практике реко-
мендуется включать в û не только значения функции потерь, но и производные показатели,
например, скорость уменьшения функции потерь, совместную информацию между входом
и выходом и т.д.

4. Вычислительный эксперимент

В данном разделе представлены результаты экспериментальной оценки предложенно-
го алгоритма подбора гиперпараметров нейронных сетей – вариационного и обычного ав-
токодировщиков. Эксперименты проводились на стандартных наборах данных CIFAR и
Fashion-MNIST и заключались в сравнении предложенного метода с базовым алгоритмом
TPE.

4.1. Наборы данных

Для проверки эффективности предложенного метода использовалось два набора дан-
ных CIFAR-10 [9] и Fashion-MNIST [10]. CIFAR-10 — набор данных для задач классифи-
кации изображений, содержащий 60 000 цветных изображений размером 32× 32 пикселей,
разделённых на 10 классов. Набор включает 50 000 обучающих и 10 000 тестовых изобра-
жений. Fashion-MNIST — набор данных, содержащий изображения одежды и аксессуаров
размером 28× 28 пикселей в градациях серого. Набор включает 60 000 обучающих и 10 000
тестовых примеров, разделённых на 10 классов.

Оба набора данных широко используются для оценки алгоритмов машинного обучения,
что позволяет сравнивать предложенный метод с существующими подходами.

4.2. Параметры автокодировщика и дополнительные признаки

В процессе оптимизации рассматривались следующие гиперпараметры: количество сло-
ев в кодировщике и декодировщике, размерность скрытого пространства, характеристики
свёрточных слоев, включая размеры отступов, размеры ядер и шагов свёртки , а также ста-
тистические показатели количества фильтров в свёрточных слоях — максимальное, мини-
мальное и среднее значения, наряду со средним изменением. Дополнительно учитывались
общее число весов модели и степень сжатия данных.

Для формирования расширенных признаков zhybrid(𝑥), извлекаемых в ходе начальных
этапов обучения, использовались различные признаки динамики обучения: значения функ-
ции потерь, а для вариационных автокодировщиков дополнительно KL-дивергенция. Также
вычислялись показатели совместной информации и канонической корреляции между вход-
ными данными, выходными данными и скрытыми представлениями. Дополнительно ана-
лизировались квантильные распределения весовых коэффициентов кодировщика и деко-
дировщика вместе с коэффициентами эксцесса для этих распределений.

Замечание: Для минимизации затрат на вычисления дополнительных признаков мож-
но использовать только функции потерь на 𝑘-ой итерации и динамику их изменения, если
𝑘 > 1.
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4.3. Протокол эксперимента

Эксперимент проводился следующим образом:
Инициализация: На каждой итерации выбиралась случайная подвыборка из 5 элемен-

тов обучающего множества и обучалась на 100 эпохах. Рассчитывалось среднее значение
функции потерь на получившихся элементах.

Обучение TPE: По этой подвыборке вычислялись целевые значения для обучения ядер-
ной оценки плотности (TPE). Отбор кандидатов:

� Классический метод: выбирались кандидаты на основе исходного ранжирования
TPE.

� Предложенный метод: изначально отбиралось 𝑘 кандидатов при помощи ранжи-
рованием базовым TPE, затем эти кандидаты дообучались на одной эпохе. После чего
на основе их функций потерь и дополнительных признаков проводился финальный
отбор через ранжирование TPE.

Обновление обучающего набора данных: Выбранный кандидат обучался на 100 эпо-
хах и добавлялся в множество для обучения. После чего перерассчитывалось среднее значе-
ние функции потерь на размеченных элементах. Критерий качества: Динамика средней
функции потерь отслеживалась в течение 𝑁 итераций эксперимента. Кроме того, по окон-
чании эксперимента рассчитывалась средняя площадь под графиком средней функции по-
терь для базового алгоритма (𝑆𝑛𝑎𝑖𝑣𝑒) и предложенного (𝑆ℎ𝑦𝑏𝑟𝑖𝑑). Разница между площадями
от первой до 150 итерации алгоритма, а также число шагов, необходимое для достижения
минимального значения функции потерь базового алгоритма, также использовались как
критерий качества. Алгоритмы для сравнения: В эксперименте сравнивались базовый
алгоритм TPE, предложенный метод Proposed(𝑙), где 𝑙 — число кандидатов на первом этапе,
и метод Full, который заранее имел доступ ко всем базовым и рассчитанным статистикам.
Стоит отметить, что алгоритм Full является исключительно теоретическим и не может
быть использован на практике, а в работе представлен исключительно для сравнения.

Эксперимент повторялся 256 раз, а результат для каждого номера итерации усреднялся
для получения статистической значимости результатов.

4.4. Результаты

Для демонстрации эффективности предложенного алгоритма были построены графики
(pис. 1) со средним значением функции потерь в зависимости от числа размеченных эле-
ментов. Использование среднего значения функции потерь, а не лучшего предсказанного
на итерации, вызвано тем, что графики становятся более гладкими и интерпретируемы-
ми. Резкое падение функции потерь вызвано тем, что инициализация первых элементов
случайна. Поскольку эксперимент проводился на ограниченном наборе гиперпараметров,
то рост среднего значения функции потерь в размеченных данных вызван тем, что после
выбора лучших кандидатов алгоритмы выбирали из оставшихся, на которых ошибка была
выше.

Результаты эксперимента подтвердили эффективность предложенного метода. На обоих
наборах данных среднее значение функции потерь размеченных моделей при использова-
нии предложенного алгоритма оказалось ниже, чем при базовом TPE-подходе.

Как видно из таблиц 1 и 2, предложенный алгоритм демонстрирует статистически зна-
чимое улучшение по сравнению с базовым методом. На рисунке 1 графики динамики изме-
нения среднего значения функции потерь на размеченных данных также показывают, что
предложенный метод быстрее сходится к меньшим значениям функции потерь.
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Рис. 1. График среднего значения функции потерь на наборе данных из отобранных алгоритмом
и обученных моделей

Т а б л и ц а 1
Разница площадей под графиками среднего значения функции потерь

размеченной выборки от числа итераций. Рассмотрено на числе итераций,

равным 150

Набор данных Модель |𝑆𝑇𝑃𝐸 | − |𝑆𝐹𝑢𝑙𝑙| |𝑆𝑇𝑃𝐸 | − |𝑆𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑(5)| |𝑆𝑇𝑃𝐸 | − |𝑆𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑(15)|
Fashion-MNIST AE 24.10 ± 8.13 31.42 ± 7.58 41.25 ± 7.53

Fashion-MNIST VAE 29.28 ± 6.91 19.16 ± 7.03 25.46 ± 7.02

CIFAR-10 AE 314.59 ± 21.97 277.53 ± 19.35 325.72 ± 20.72

CIFAR-10 VAE 101.19 ± 10.65 50.42 ± 10.88 86.38 ± 10.35

Т а б л и ц а 2
Число шагов для достижения лучшего значения функции потерь базового

метода с процентным уменьшением относительно TPE. SBTB — это Steps Best

To Baseline, число шагов для достижения лучшего результата базового

алгоритма

Набор данных Модель SBB TPE SBB Full SBB Proposed(5) SBB Proposed(15)

Fashion-MNIST AE 88 61 (-30%) 36 (-59%) 34 (-61%)

Fashion-MNIST VAE 35 22 (-37%) 26 (-25%) 23 (-34%)

CIFAR-10 AE 58 22 (-62%) 25 (-57%) 23 (-60%)

CIFAR-10 VAE 11 8 (-27%) 10 (-9%) 9 (-18%)

5. Заключение

В данной работе представлен новый алгоритм байесовского подбора гиперпараметров
авторегрессионных сетей, основанный на двухэтапной процедуре отбора. Теоретическая
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значимость исследования заключается в разработке формальной постановки задачи, дока-
зательстве соответствующей теоремы об условиях эффективности метода, а также введе-
нии нового класса алгоритмов, объединяющих байесовскую оптимизацию с ранним прогно-
зированием качества моделей. С практической точки зрения предложенный метод демон-
стрирует существенные преимущества, показывая сокращение вычислительных затрат до
60% по сравнению с базовыми подходами в экспериментах на стандартных наборах данных.

Перспективные направления дальнейших исследований включают разработку опти-
мальных стратегий выбора признаков для различных классов моделей, создание адап-
тивных схем определения числа эпох частичного обучения, применение метода для ар-
хитектурного поиска (NAS) и его интеграцию с методами метаобучения для эффективного
переноса знаний между задачами.

Следует отметить, что основное ограничение метода связано с необходимостью тща-
тельного подбора характеристик частичного обучения, таких как число эпох 𝑛 и состав
признаков û, для каждой новой задачи. Однако экспериментальные результаты подтвер-
ждают, что на практике для настройки этих гиперпараметров достаточно небольшого числа
пробных запусков.
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