Адрес e-mail:


2020 год

  1. Enhancement of the blood-circulation time and performance of nanomedicines via the forced clearance of erythrocytes M. P. Nikitin, I. V. Zelepukin, V. O. Shipunova, I. L. Sokolov, S. M. Deyev, P. I. Nikitin, Nature Biomedical Engineering, 2020, 4, 717–731. https://doi.org/10.1038/s41551-020-0581-2
  2. Nanoparticle Beacons: Supersensitive Smart Materials with On/Off-Switchable Affinity to Biomedical Targets. Cherkasov, V. R., Mochalova, E. N., Babenyshev, A. V., Vasilyeva, A. V., Nikitin, P. I., & Nikitin, M. P. ACS Nano (2020). DOI: 10.1021/acsnano.9b07569.
  3. Fast processes of nanoparticle blood clearance: Comprehensive study  V. Zelepukin, A. V.Yaremenko, M.  V.Yuryev, A. B.Mirkasymov, I. L.Sokolov, S. M. Deyev, P. I. Nikitin, M. P. Nikitin. Journal of Controlled Release, 2020, 326,181-191. https://doi.org/10.1016/j.jconrel.2020.07.014
  4.  Antibody-directed metal-organic framework nanoparticles for targeted drug delivery. Cherkasov, V. R., Mochalova, E. N., Babenyshev, A. V., Rozenberg, J. M., Sokolov, I. L., Nikitin, M. P.  Acta Biomaterialia, 2020, 103, 223-236. DOI: 10.1016/j.actbio.2019.12.012
  5. Spindle-like MRI-active europium-doped iron oxide nanoparticles with shape-induced cytotoxicity from simple and facile ferrihydrite crystallization procedure. Lunin, A. V., Sokolov, I. L., Zelepukin, I. V., Zubarev, I. V., Yakovtseva, M. N., Mochalova, E. N., Kolychev, E. L. RSC Advances, (2020), 10(12), 7301-7312. DOI: 10.1039/C9RA10683A
  6. Hematite Nanoparticles from Unexpected Reaction of Ferrihydrite with Concentrated Acids for Biomedical Applications. A. V. Lunin, A. A. Lizunova, E. N. Mochalova, M. N. Yakovtseva, V. R. Cherkasov, M. P. Nikitin, E. L. Kolychev. Molecules 2020, 25(8), 984; https://doi.org/10.3390/molecules25081984
  7. Precise Quantitative Analysis of Cell Targeting by Particle‐Based Agents Using Imaging Flow Cytometry and Convolutional Neural Network. E. N. Mochalova, I. A. Kotov, J. M. Rozenberg, M. P. Nikitin Cytometry Part A, 2020, 97, 279-287 https://doi.org/10.1002/cyto.a.23939
  8. Nanomagnetic lateral flow assay for high-precision quantification of diagnostically relevant concentrations of serum TSH. S. L. Znoyko, A. V. Orlov, V. A. Bragina, M. P .Nikitin, P. I. Nikitin, Talanta, 2020, 216,  120961, https://doi.org/10.1016/j.talanta.2020.120961
  9. Dynamic light scattering biosensing based on analyte-induced inhibition of nanoparticle aggregation, A. D. Levin, A. Ringaci, M. K. Alenichev, E. B. Drozhzhennikova, K. G. Shevchenko, V. R. Cherkasov, M. P. Nikitin, P. I. Nikitin, Analytical and Bioanalytical Chemistry, 2020, 412, 3423–3431, https://doi.org/10.1007/s00216-020-02605-9

 2019 год

  1. Analytical Platform with Selectable Assay Parameters Based on Three Functions of Magnetic Nanoparticles: Demonstration of Highly Sensitive Rapid Quantitation of Staphylococcal Enterotoxin B in Food. V.A. Bragina, S.L. Znoyko, A.V. Orlov, A.V. Pushkarev, M.P. Nikitin, P.I. Nikitin, Anal. Chem. (2019), 91(15), 9852-9857. DOI: 10.1021/acs.analchem.9b01519
  2. Rapid lateral flow assays based on the quantification of magnetic nanoparticle labels for multiplexed immunodetection of small molecules: application to the determination of drugs of abuse.N.V. Guteneva, S.L. Znoyko, A.V. Orlov, M.P. Nikitin, P.I. Nikitin, Mikrochim. Acta, (2019), 186:621. DOI: 10.1007/s00604-019-3726-9

  3. Nanoparticle-based drug delivery via RBC-hitchhiking for the inhibition of lung metastases growth. I.V. Zelepukin, A.V. Yaremenko, V.O. Shipunova, A.V. Babenyshev, I.V. Balalaeva, P.I. Nikitin, S.M. Deyev, M.P. Nikitin, Nanoscale, (2019), 11 (4), 1636-1646. DOI: 10.1039/c8nr07730d

  4. Interferometric detection of chloramphenicol via its immunochemical recognition at polymer-coated nano-corrugated surfaces. A.E. Ivanov, A.V. Pushkarev, A.V. Orlov, M.P. Nikitin, P.I. Nikitin, Sens. Actuators B: Chem., (2019), 282, 984–991. DOI: 10.1016/j.snb.2018.11.043

  5. Synthesis of highly-specific stable nanocrystalline goethite-like hydrous ferric oxide nanoparticles for biomedical applications by simple precipitation method. V. Lunin, E.L. Kolychev, E.N. Mochalova, V.R. Cherkasov, M.P. Nikitin. J. Colloid Interface Sci., (2019), 541, 143–149. DOI: 10.1016/j.jcis.2019.01.065

  6. Magnetometry based method for investigation of nanoparticle clearance from circulation in a liver perfusion model. I.V. Zelepukin, A.V. Yaremenko, E.V. Petersen, S.M. Deyev, V.R. Cherkasov, P.I. Nikitin, M.P. Nikitin, Nanotechnology, (2019), 30 (10), 105101. DOI: 10.1088/1361-6528/aafa3a

  7. Self-assembling nanoparticles biofunctionalized with magnetite-binding protein for the targeted delivery to HER2/neu overexpressing cancer cells. V.O. Shipunova, P.A Kotelnikova, U.F Aghayeva, O.A Stremovskiy, I.A Novikov, A.A Schulga, M.P Nikitin, S.M Deyev, J. Magn. Magn. Mater., (2019), 469, 450–455. DOI: 10.1016/j.jmmm.2018.09.015

  8. Nano-biosensors based on dynamic light scattering. A.D. Levin, M.P. Nikitin, M.K. Alenichev, E.B. Drozhzhennikova, V.G. Grigorenko, A.S. Ringaci, I.P. Andreeva, Proc. SPIE, (2019), 110600Y. DOI: 10.1117/12.2526055

  9. Development of the SPR based method for real-time monitoring of surface cell markers density. K.G. Shevchenko, A.V. Lunin, A.V. Popova, E.L. Kolychev, B.G. Gorshkov, M.P. Nikitin, Cell Death Dis., (2019), 5 (54), ECDO 46. DOI: 10.1038/s41420-018-0128-4

  10. Drug delivery with functionalized magnetic metal-organic framework nanoparticles. A.V. Babenyshev, K.G. Shevchenko, A.V. Yaremenko, V.R. Cherkasov, P.I. Nikitin, M.P. Nikitin, Cell Death Dis., (2019), 5 (54), ECDO 44. DOI: 10.1038/s41420-018-0128-4

  11. Fabrication of Highly Specific Drug Delivery Nanoagents and Investigation of Their Interaction with Cells, E. N. Mochalova, I.L. Sokolov, I.L. Nikitina, A.V. Orlov, K.G. Shevchenko, Cell Death Dis., (2019), 5 (54), ECDO 45. DOI: 10.1038/s41420-018-0128-4

2018 год

  1. Advanced smart nanomaterials with integrated logic-gating and biocomputing: dawn of theranostic nanorobots. A.A. Tregubov, P.I. Nikitin, M.P. Nikitin, Chem. Rev., (2018), 118(20), 10294–10348. DOI: 10.1021/acs.chemrev.8b00198

  2. Versatile platform for nanoparticle surface bioengineering based on SiO2-binding peptide and proteinaceous barnase*barstar interface. V.O. Shipunova, I.V. Zelepukin, O.A. Stremovskiy, M.P. Nikitin, A. Care, A. Sunna, A.V. Zvyagin, S.M. Deyev, ACS Appl. Mater. Interfaces., (2018), 10(20), 17437–17447. DOI: 10.1021/acsami.8b01627

  3. Ultrasensitive detection enabled by nonlinear magnetization of nanomagnetic labels. M.P. Nikitin, A.V. Orlov, I.L. Sokolov, A.A. Minakov, P.I. Nikitin, J. Ding, S.D. Bader, E.A. Rozhkova, V. Novosad, Nanoscale, (2018), 10 (24), 11642–11650, DOI: 10.1039/c8nr01511b

  4. Development and label-free investigation of logic-gating biolayers for smart biosensing. A.V. Orlov, A.V. Pushkarev, E.N. Mochalova, P.I. Nikitin, M.P. Nikitin, Sens. Actuators B: Chem., (2018), 257, 971–979. DOI: 10.1016/j.snb.2017.11.025

  5. Ultrasensitive quantitative detection of small molecules with rapid lateral-flow assay based on high-affinity bifunctional ligand and magnetic nanolabels. S.L. Znoyko, A.V. Orlov, A.V. Pushkarev, E.N. Mochalova, N.V. Guteneva, A.V. Lunin, M.P. Nikitin, P.I. Nikitin, Anal. Chim. Acta, (2018), 1034, 161–167. DOI: 10.1016/j.aca.2018.07.012

  6. Multiplex biosensing with highly sensitive magnetic nanoparticle quantification method. M.P. Nikitin, A.V. Orlov, S.L. Znoyko, V.A. Bragina, B.G. Gorshkov, T.I. Ksenevich, V.R. Cherkasov, P.I. Nikitin, J. Magn. Magn. Mater., (2018), 459, 260–264, DOI: 10.1016/j.jmmm.2017.10.078

  7. Magnetic hybrid magnetite/metal organic framework nanoparticles: facile preparation, post-synthetic biofunctionalization and tracking in vivo with magnetic methods. A.A. Tregubov, I.L. Sokolov, A.V. Babenyshev, P.I. Nikitin, V.R. Cherkasov, M.P. Nikitin, J. Magn. Magn. Mater., (2018), 449, 590–596. DOI: 10.1016/j.jmmm.2017.10.070

  8. Smart multifunctional nanoagents for in situ monitoring of small molecules with a switchable affinity towards biomedical targets. K.G. Shevchenko, V.R. Cherkasov, I.L. Nikitina, A.V. Babenyshev, M.P. Nikitin, Appl. Nanosci., (2018), 8(1-2), 195–203. DOI: 10.1007/s13204-018-0659-2

  9. Smart ligand-sensitive monolayers based on modified liposomes for biomedical applications. A.V. Lunin, V.R. Cherkasov, M.P. Nikitin, J. Bioenerg. Biomembr., (2018), 50 (6), 560–560.

  10. Paramagnetic colloidal ferrihydrite nanoparticles for MRI contrasting. I.L. Sokolov, V.R. Cherkasov, A.V. Vasilyeva, V.A. Bragina, M.P. Nikitin, Colloids Surf. A Physicochem. Eng. Asp., (2018), 539, 46–52. DOI: 10.1016/j.colsurfa.2017.11.062

  11. Synthesis of Magnetic Nanoparticles Stabilized by Magnetite-Binding Protein for Targeted Delivery to Cancer Cells. P.A. Kotelnikova, V.O. Shipunova, U.F. Aghayeva, O.A. Stremovskiy, M.P. Nikitin, I.A. Novikov, A.A. Schulga, S.M. Deyev, R.V. Petrov, Dokl. Biochem. Biophys., (2018), 481 (1), 198–200. DOI: 10.1134/S1607672918040051

  12. Data on characterization of magnetic nanoparticles stabilized with fusion protein of Barstar and C-term part of Mms6. V.O. Shipunova, P.A. Kotelnikova, U.F. Aghayeva, O.A. Stremovskiy, A.A. Schulga, M.P. Nikitin, S.M. Deyev, Data in Brief, 2018, 21, 1659–1663. DOI: 10.1016/j.dib.2018.10.173

  13. Data on characterization and validation of assays for ultrasensitive quantitative detection of small molecules: Determination of free thyroxine with magnetic and interferometric methods. A.V. Orlov, S.L. Znoyko, A.V. Pushkarev, E.N. Mochalova, N.V. Guteneva, A.V. Lunin, M.P. Nikitin, P.I.  Nikitin, Data in Brief, (2018), 21, 1603–1611. DOI: 10.1016/j.dib.2018.10.145

  14. Volumetric registration of magnetic nanoparticles for optimization of quantitative immunochromatographic assays for detection of small molecules. N.V. Guteneva, S.L. Znoyko, A.V. Orlov, M.P. Nikitin, P.I. Nikitin, EPJ Web of Conferences, (2018), 185, 10006. DOI: 10.1051/epjconf/201818510006

  15. Synthesis of Luminescent Magnetic Nanoparticles with Controllable Surface Properties. I.V. Zelepukin,  V.O. Shipunova,  A.B. Mirkasymov,  P.I. Nikitin,  M.P. Nikitin,  S.M. Deyev, Proceedings - International Conference Laser Optics 2018, (2018), 8435620, 576. DOI: 10.1109/LO.2018.8435620

  16. Intelligent Nanoparticle-Based Agents for Biomedical Applications: Rapid Design Using a Lateral Flow Assay. E.N. Mochalova, A.V. Pushkarev, P.I. Nikitin, M.P. Nikitin, Proceedings - International Conference Laser Optics 2018, (2018), 8435254, 569. DOI: 10.1109/LO.2018.8435254

  17. Targeting of tumor tissues with magnetic nanoparticles. M. Gonçalves,  R. Schwartz-Albiez,  P.I. Nikitin,  M.P. Nikitin,  F. Momburg. Proceedings - International Conference Laser Optics 2018, (2018), 8435481, 541. DOI: 10.1109/LO.2018.8435481

  18. Smart Biolayers on Solid Phase: Rational Design and Investigation by Spectral-Phase Interferometry. A.V. Pushkarev, E.N. Mochalova, S.L. Znoyko, M.P. Nikitin, A.V. Orlov, Proceedings - International Conference Laser Optics 2018, (2018), 8435399, 563. DOI: 10.1109/LO.2018.8435399

  19. Multifunctional Nanoagents for Logic-Gated Chemosensing, Diagnostics and Drug Delivery. M.P. Nikitin, Proceedings - International Conference Laser Optics 2018, (2018), 8435454, 535. DOI: 10.1109/LO.2018.8435454

  20. Modified Liposomes as Optical Probes, Magnetic Labels, and Drug Carriers. A.V. Lunin, A.V. Vasilyeva, B.G. Gorshkov, I.L. Sokolov, V.R. Cherkasov, Proceedings - International Conference Laser Optics 2018, (2018), 8435580, 575. DOI: 10.1109/LO.2018.8435580

  21. Nanocomplexes For in situ Detection of Small Molecules With Switchable Optical Properties. A.V. Babenyshev, K.G. Shevchenko, A.A. Tregubov, I.L. Nikitina, V.R. Cherkasov, Proceedings - International Conference Laser Optics 2018, (2018), 8435586, 571. DOI: 10.1109/LO.2018.8435586

  22. Development of SPR Based Tool For Monitoring of Self-Assembly of Heterogenous Nanoparticle Complexes. K.G. Shevchenko, A.V. Babenyshev, A.A. Tregubov, I.L. Nikitina, V.R. Cherkasov, Proceedings - International Conference Laser Optics 2018 (2018), 8435745, 550. DOI: 10.1109/LO.2018.8435745

  23. Fluorescent Superparamagnetic and Paramagnetic Agents for Bioimaging, Sensing and Cell Targeting. I.L. Sokolov, A.V. Vasilyeva, A.V. Lunin, A.V. Yaremenko, V.R. Cherkasov. Proceedings - International Conference Laser Optics 2018 (2018), 8435453, 545. DOI: 10.1109/LO.2018.8435453

  24. Multiplex Express In Vitro Diagnostics based on Magnetic Nanoparticles. V.A. Bragina, B.G. Gorshkov, N.V. Guteneva, M.P. Nikitin, P.I. Nikitin, A.V. Orlov, S.L. Znoyko TechConnect Briefs, (2018) 3, 102–105 Read online

2017 год

  1. Highly reproducible and sensitive detection of mycotoxins by label-free biosensors. A.V. Orlov, A.G. Burenin, N.G. Massarskaya, A.V. Betin, M.P. Nikitin, P.I. Nikitin, Sens. Actuators B: Chem. (2017), 246, 1080–1084. DOI: 10.1016/j.snb.2016.12.071

  2. Exogenous iron redistribution between brain and liver after administering 57Fe3O4 ferrofluid to a rat brain ventricle, R. R. Gabbasov, V. M. Cherepanov, M. A. Chuev, I. N. Mishchenko, D. M. Polikarpov, N. A. Loginova, E. V. Loseva, M. P. Nikitin, V. Y. Panchenko, Bulletin of the Russian Academy of Sciences: Physics, (2017), 81 (7), 788–792. DOI: 10.3103/S1062873817070127

  3. Exogenous iron redistribution between brain and spleen after the administration of the 57 Fe3O4 ferrofluid into the ventricle of the brain. R. Gabbasov, D. Polikarpov, V. Cherepanov, M. Chuev, I. Mischenko, N. Loginiva, E. Loseva, M. Nikitin, V. Panchenko, J. Magn. Magn. Mater. (2017) 427, 41–47. DOI: 10.1016/j.jmmm.2016.11.029

  4. Self-assembling multifunctional nanostructures for the controlled delivery to cancer cells. V. Shipunova, M. Nikitin, S. Deyev, FEBS Journal, (2017) 284 (S1), 279–280. DOI: 10.1111/febs.14174
  5. Surface plasmon resonance as a tool for investigation of non-covalent nanoparticle interactions in heterogeneous self-assembly & disassembly systems. K.G. Shevchenko, V.R. Cherkasov, A.A. Tregubov, P.I. Nikitin, M.P. Nikitin, Biosensors and Bioelectronics, (2017) 88, 3-8. DOI: 10.1016/j.bios.2016.09.042 

  6. Non-Covalent Conjugation of Antibodies and Lentiviruses to Nanoparticles as a Potential Tool for Gene Therapy. A. Petukhov, K. Shevchenko, A. Daks, T. Leonova, A. Titov, E. Smirnov, E. Zaikova, E. Petersen, D. Motorin, A. Zaritskey, M. Nikitin, Clin. Lymphoma Myeloma Leuk. (2017), 17 (S2), S394 – S395. DOI: 10.1016/j.clml.2017.07.250

  7. Synthesis and Characterization of Hybrid Core-Shell Fe3O4/SiO2 Nanoparticles for Biomedical Applications. I.V. Zelepukin, V.O. Shipunova, A.B. Mirkasymov, P.I. Nikitin, M.P. Nikitin, S.M. Deyev, Acta Nat. (2017), 9 (4), 58 – 65. DOI: 10.32607/2075851-2017-9-4-58-65

  8. Smart materials on the way to theranostic nanorobots: molecular machines and nanomotors, advanced biosensors, and intelligent vehicles for drug delivery. I.L. Sokolov, V.R. Cherkasov, A.A. Tregubov, S.R. Buiucli, M.P. Nikitin. Biochimica et Biophysica Acta (BBA) - General Subjects (in press, available online 24 January 2017). DOI: 10.1016/j.bbagen.2017.01.027

2016 год

  1. Highly reproducible and sensitive detection of mycotoxins by label-free biosensors. A.V. Orlov, A.G. Burenin, N.G. Massarskaya, A.V. Betin, M.P. Nikitin, P.I. Nikitin.Sensors and Actuators B: Chemical. (in press, available online 14 December 2016). DOI: 10.1016/j.snb.2016.12.071

  2. Mössbauer and X-ray study of biodegradation of 57Fe3 O 4 magnetic nanoparticles in rat brain. R.R. Gabbasov, V.M. Cherepanov, M.A. Chuev, A.A. Lomov, I.N. Mischenko, M.P. Nikitin, M.A. Polikarpov, V.Y. Panchenko. Hyperfine Interactions, vol. 237(1), pp. 1-12 (2016). DOI: 10.1007/s10751-016-1237-1

  3. Exogenous iron redistribution between brain and spleen after the administration of the 57 Fe 3 O 4 ferrofluid into the ventricle of the brain. R. Gabbasov, D. Polikarpov, V. Cherepanov, M. Chuev, I. Mischenko, N. Loginiva, E. Loseva, M. Nikitin, V. Panchenko. Journal of Magnetism and Magnetic Materials, (in press, Available online 12 November 2016). DOI: 10.1016/j.jmmm.2016.11.029

  4. Multiplex Biosensing Based on Highly Sensitive Magnetic Nanolabel Quantification: Rapid Detection of Botulinum Neurotoxins A, B, and E in Liquids. A.V. Orlov, S.L. Znoyko, V.R. Cherkasov, M.P. Nikitin, P.I. Nikitin.Analytical Chemistry, vol. 88 (21), pp. 10419-10426 (2016). DOI: 10.1021/acs.analchem.6b02066

  5. Synthesis of magnetic silica nanomarkers with controlled physicochemical properties. I.V. Zelepukin, M.P. Nikitin, V.R. Cherkasov, P.I. Nikitin, S.M. Deyev, P.V. Petrov. Biochemistry and Biophysics, vol. 470 (1), pp. 335-337 (2016). DOI: 10.1134/S1607672916050100

  6. Rapid dry-reagent immunomagnetic biosensing platform based on volumetric detection of nanoparticles on 3D structures. A.V. Orlov, V.A. Bragina, M.P. Nikitin, P.I. Nikitin.Biosensors and Bioelectronics, vol. 79, pp. 423-429 (2016). DOI: 10.1016/j.bios.2015.12.049

  7. MPQ-Cytometry: a Magnetism-Based Method for Quantification of Nanoparticle-Cell Interactions.  V.O. Shipunova, M.P. Nikitin, P.I. Nikitin, S.M. Deyev.Nanoscale, vol. 8, pp. 12764-12772 (2016). DOI: 10.1039/c6nr03507h

2015 год

  1. A comprehensive study of interactions between lectins and glycoproteins for the development of effective theranostic nanoagents. V.O. Shipunova, M.P. Nikitin, I.V. Zelepukin, P.I. Nikitin, S.M. Deyev, R.V. Petrov. Biochemistry and Biophysics, vol. 464 (1), pp. 315-318 (2015). DOI: 10.1134/S1607672915050117

  2. Direct immunosensing by spectral correlation interferometry: assay characteristics versus antibody  immobilization chemistry. A.G. Burenin, A.E. Urusov, A.V. Betin, A.V. Orlov, M.P. Nikitin, T.I. Ksenevich, , B.G. Gorshkov, A. V. Zherdev, B.B. Dzantiev, P.I. Nikitin.Analytical and bioanalytical chemistry, vol. 407 (14), pp. 3955-3964 (2015). DOI: 10.1007/s00216-015-8600-y

  3. Mössbauer study of exogenous iron redistribution between the brain and the liver after administration of 57Fe3O4 ferrofluid in the ventricle of the rat brain.  Polikarpov D., Gabbasov R., Cherepanov V., Loginova N., Loseva E., Nikitin M., Yurenia A., Panchenko V. Journal of Magnetism and Magnetic Materials, v. 380, pp. 78–84 (2015). DOI: 10.1016/j.jmmm.2014.10.084

  4. A new real-time method for investigation of affinity properties and binding kinetics of magnetic nanoparticles. A.V. Orlov, M.P. Nikitin, V.A. Bragina, S.L. Znoyko, M.N. Zaikina, T.I. Ksenevich, B.G. Gorshkov, P.I. Nikitin. Journal of Magnetism and Magnetic Materials, v. 380, pp. 231-235 (2015). DOI: 10.1016/j.jmmm.2014.10.019

  5. Combined Photodynamic Thermochemotherapy of Glial Tumors Controlled by MRI and Electronic Sensor.  N.A. Brusentsov, V.A. Polianskiy, A.V. Zhukov, M.V. Gulyaev, M.P. Nikitin, P.I. Nikitin, T.N. Brusentsova, V.D. Kuznetsov, O.A. Bocharova, A.Yu. Baryshnikov. Solid State Phenomena, vol. 233, pp. 757-760 (2015). DOI:10.4028/www.scientific.net/SSP.233-234.757

2014 год

  1. Biocomputing based on particle disassembly. M.P. Nikitin, V.O. Shipunova, S.M. Deyev, P.I. Nikitin. Nature Nanotechnology, vol. 9(9), pp.716-722 (2014). DOI: 10.1038/NNANO.2014.156

  2. Mössbauer evidence of 57Fe3O4 based ferrofluid biodegradation in the brain. D. Polikarpov, V. Cherepanov, M. Chuev, R. Gabbasov, I. Mischenko, M. Nikitin, Y. Vereshagin, A. Yurenia, V. Panchenko. Hyperfine Interactions, vol. 226 (1-3), pp. 421-430 (2014). DOI: 10.1007/s10751-013-1002-7

  3. Generation and delivery of nanoaerosols from biological and biologically active substances. V.N. Morozov, I.L. Kanev, A.Y. Mikheev, E.A. Shlyapnikova, Y.M. Shlyapnikov, M.P. Nikitin, P.I. Nikitin, A.O. Nwabueze, M.L. van Hoek. Journal of Aerosol Science, vol. 69,  pp. 48–61 (2014). DOI: 10.1016/j.jaerosci.2013.12.003

Если вы заметили в тексте ошибку, выделите её и нажмите Ctrl+Enter.

© 2001-2021 Московский физико-технический институт (национальный исследовательский университет)

Противодействие коррупции | Сведения о доходах

Политика обработки персональных данных МФТИ

Техподдержка сайта | API

Использование новостных материалов сайта возможно только при наличии активной ссылки на https://mipt.ru

МФТИ в социальных сетях