Адрес e-mail:

Публикации лаборатории прикладной вычислительной геофизики МФТИ

Публикации за 2014 год

  1. Beklemysheva, K. A., Petrov, I. B., & Favorskaya, A. V. (2014). Numerical simulation of processes in solid deformable media in the presence of dynamic contacts using the grid-characteristic method. Mathematical Models and Computer Simulations, 6, 294–304. http://doi.org/10.1134/S207004821403003X
  2. Cai, H., Xiong, B., Han, M., & Zhdanov, M. (2014). 3D controlled-source electromagnetic modeling in anisotropic medium using edge-based finite element method. Computers and Geosciences, 73, 164–176. http://doi.org/10.1016/j.cageo.2014.09.008
  3. Golubev, V. (2014). Precise Modeling of Seismic Responses from Fractured Geological Media.
  4. Kvasov, I. E., Leviant JSC, V. B., & Petrov, I. B. (2014). Numerical Modeling of Direct Responses from Productive Reservoirs with Vertical Fluid-saturated Meso-fractures. http://doi.org/10.3997/2214-4609.20141192
  5. Leviant JSC, V. B., Petrov, I. B., Kvasov, I. E., & Muratov, M. V. (2014). Numerical Modeling of Responses from Fluid-filled Macrofractures with Boundary Conditions Specified on Fracture Surfaces (pp. 16–19). http://doi.org/10.3997/2214-4609.20141524
  6. Petrov, I. B., Favorskaya, A. V., Muratov, M. V., Biryukov, V. A., & Sannikov, A. V. (2014a). Grid-characteristic method on unstructured tetrahedral grids. Doklady Mathematics, 90, 781–783. http://doi.org/10.1134/S1064562414070254
  7. Petrov, I. B., Favorskaya, A. V., Muratov, M. V., Biryukov, V. A., & Sannikov, A. V. (2014b). Grid-characteristic method on unstructured tetrahedral grids. Doklady Mathematics, 90, 781–783. http://doi.org/10.1134/S1064562414070254
  8. Petrov, I. B., & Khokhlov, N. I. (2014). Modeling 3D seismic problems using high-performance computing systems. Mathematical Models and Computer Simulations, 6, 342–350. http://doi.org/10.1134/S2070048214040061
  9. Vasyukov, A. V, Ermakov, A. S., Potapov, A. P., Petrov, I. B., Favorskaya, A. V, & Shevtsov, A. V. (2014a). Combined grid-characteristic method for the numerical solution of three-dimensional dynamical elastoplastic problems. Comput. Math. Math. Phys., 54, 1176–1189. http://doi.org/10.1134/S0965542514070100
  10. Vasyukov, A. V, Ermakov, A. S., Potapov, A. P., Petrov, I. B., Favorskaya, A. V, & Shevtsov, A. V. (2014b). Combined grid-characteristic method for the numerical solution of three-dimensional dynamical elastoplastic problems. Comput. Math. Math. Phys., 54, 1176–1189. http://doi.org/10.1134/S0965542514070100


Публикации за 2015 год

  1. Beklemysheva, K. A., Danilov, A. A., Petrov, I. B., Salamatova, V. Y., Vassilevski, Y. V., & Vasyukov, A. V. (2015). Virtual blunt injury of human thorax: Age-dependent response of vascular system. Russian Journal of Numerical Analysis and Mathematical Modelling, 30, 259–268. http://doi.org/10.1515/rnam-2015-0023
  2. Belyaev, A., Berezhnaya, A., Betev, L., Buncic, P., De, K., Drizhuk, D., … Yasnopolskiy, L. (2015). Integration of Russian Tier-1 Grid Center with High Performance Computers at NRC-KI for LHC experiments and beyond HENP. Journal of Physics: Conference Series, 664, 092018. http://doi.org/10.1088/1742-6596/664/9/092018
  3. Biryukov, V. A., Muratov, M. V., Petrov, I. B., Sannikov, A. V., & Favorskaya, A. V. (2015). Application of the grid-characteristic method on unstructured tetrahedral meshes to the solution of direct problems in seismic exploration of fractured layers. Computational Mathematics and Mathematical Physics, 55, 1733–1742. http://doi.org/10.1134/S0965542515100073
  4. Cai, H., & Zhdanov, M. (2015a). Application of Cauchy-type integrals in developing effective methods for depth-to-basement inversion of gravity and gravity gradiometry data. Geophysics, 80, G81–G94. http://doi.org/10.1190/geo2014-0332.1
  5. Cai, H., & Zhdanov, M. S. (2015b). Modeling and inversion of magnetic anomalies caused by sediment-basement interface using three-dimensional cauchy-type integrals. IEEE Geoscience and Remote Sensing Letters, 12, 477–481. http://doi.org/10.1109/LGRS.2014.2347275
  6. Golubev, V. I., Petrov, I. B., & Khokhlov, N. I. (2015). Simulation of seismic processes inside the planet using the hybrid grid-characteristic method. Mathematical Models and Computer Simulations, 7, 439–445. http://doi.org/10.1134/S2070048215050051
  7. Golubev, V. I., Petrov, I. B., Khokhlov, N. I., & Shul’ts, K. I. (2015). Numerical computation of wave propagation in fractured media by applying the grid-characteristic method on hexahedral meshes. Computational Mathematics and Mathematical Physics, 55, 509–518. http://doi.org/10.1134/S0965542515030082
  8. Khokhlov, N. I., & Petrov, I. B. (2015). On bicompact grid-characteristic schemes for the linear advection equation. Doklady Mathematics, 92, 781–783. http://doi.org/10.1134/S1064562415060289
    Khokhlov, N., Yavich, N., Malovichko, M., & Petrov, I. (2015). Solution of Large-scale Seismic Modeling Problems. In Procedia Computer Science (Vol. 66, pp. 191–199). http://doi.org/10.1016/j.procs.2015.11.023
  9. Miryaha, V. A., Sannikov, A. V., & Petrov, I. B. (2015). Discontinuous galerkin method for numerical simulation of dynamic processes in solids. Mathematical Models and Computer Simulations, 7, 446–455. http://doi.org/10.1134/S2070048215050087
  10. Xu, Z., & Zhdanov, M. S. (2015). Three-Dimensional Cole-Cole Model Inversion of Induced Polarization Data Based on Regularized Conjugate Gradient Method. IEEE Geoscience and Remote Sensing Letters, 12, 1180–1184. http://doi.org/10.1109/LGRS.2014.2387197
  11. Yoon, D., & Zhdanov, M. S. (2015). Optimal synthetic aperture method for marine controlled-source em surveys. IEEE Geoscience and Remote Sensing Letters, 12, 414–418. http://doi.org/10.1109/LGRS.2014.2345416


Публикации за 2016 год

  1. Beklemysheva, K. A., Vasyukov, A. V., Ermakov, A. S., & Petrov, I. B. (2016). Numerical simulation of the failure of composite materials by using the grid-characteristic method. Mathematical Models and Computer Simulations, 8. http://doi.org/10.1134/S2070048216050033
  2. Biryukov, V. A., Miryakha, V. A., Petrov, I. B., & Khokhlov, N. I. (2016). Simulation of elastic wave propagation in geological media: Intercomparison of three numerical methods. Computational Mathematics and Mathematical Physics, 56, 1086–1095. http://doi.org/10.1134/S0965542516060087
  3. Cai, H., & Zhdanov, M. (2016). Three-Dimensional Inversion of Magnetotelluric Data for the Sediment-Basement Interface. IEEE Geoscience and Remote Sensing Letters, 13, 349–353. http://doi.org/10.1109/LGRS.2015.2512913
  4. Favorskaya, A., Petrov, I., & Khokhlov, N. (2016). Numerical Modeling of Wave Processes during Shelf Seismic Exploration. In Procedia Computer Science (Vol. 96, pp. 920–929). http://doi.org/10.1016/j.procs.2016.08.271
  5. Favorskaya, A. V., & Petrov, I. B. (2016a). A study of high-order grid-characteristic methods on unstructured grids. Numerical Analysis and Applications, 9, 171–178. http://doi.org/10.1134/S1995423916020087
  6. Favorskaya, A. V., & Petrov, I. B. (2016b). Wave responses from oil reservoirs in the Arctic shelf zone. Doklady Earth Sciences, 466, 214–217. http://doi.org/10.1134/S1028334X16020185
  7. Favorskaya, A. V., Petrov, I. B., Petrov, D. I., & Khokhlov, N. I. (2016). Numerical modeling of wave processes in layered media in the Arctic region. Mathematical Models and Computer Simulations, 8, 348–357. http://doi.org/10.1134/S2070048216040074
  8. Golubev, V. I., Petrov, I. B., & Khokhlov, N. I. (2016). Compact grid-characteristic schemes of higher orders of accuracy for a 3D linear transport equation. Mathematical Models and Computer Simulations, 8, 577–584. http://doi.org/10.1134/S2070048216050082
  9. Khokhlov, N. I., & Petrov, I. B. (2016). On one class of high-order compact grid-characteristic schemes for linear advection. Russian Journal of Numerical Analysis and Mathematical Modelling, 31. http://doi.org/10.1515/rnam-2016-0033
  10. Kotelnikov, S. a, Favorskaya, a V, Petrov, I. B., & Khokhlov, N. I. (2016). Numerical Simulation of Non-Destructive Ultrasonic Railway Control, 1–20. http://doi.org/10.4203/ccp.110.163
  11. Kvasov, I. E., Leviant, V. B., & Petrov, I. B. (2016). Numerical study of wave propagation in porous media with the use of the grid-characteristic method. Computational Mathematics and Mathematical Physics, 56, 1620–1630. http://doi.org/10.1134/S0965542516090116
  12. Malovichko, M., Khokhlov, N., Yavich, N., & Zhdanov, M. S. (2016). Quasi-analytical Approximation for Acoustic 3D Full-waveform Inversion. http://doi.org/10.3997/2214-4609.201602106
  13. Petrov, D. I., Petrov, I. B., Favorskaya, A. V., & Khokhlov, N. I. (2016). Numerical solution of seismic exploration problems in the Arctic region by applying the grid-characteristic method. Computational Mathematics and Mathematical Physics, 56, 1128–1141. http://doi.org/10.1134/S0965542516060208
  14. Petrov, I. (2016). Computational problems in Arctic Research. Journal of Physics: Conference Series, 681, 012026. http://doi.org/10.1088/1742-6596/681/1/012026
  15. Petrov, I., Vasyukov, A., Beklemysheva, K., Ermakov, A., & Favorskaya, A. (2016). Numerical Modeling of Non-destructive Testing of Composites. In Procedia Computer Science (Vol. 96, pp. 930–938). http://doi.org/10.1016/j.procs.2016.08.272
  16. Vassilevski, Y. V., Beklemysheva, K. A., Grigoriev, G. K., Kazakov, A. O., Kulberg, N. S., Petrov, I. B., … Vasyukov, A. V. (2016). Transcranial ultrasound of cerebral vessels in silico: proof of concept. Russian Journal of Numerical Analysis and Mathematical Modelling, 31. http://doi.org/10.1515/rnam-2016-0030
  17. Voroshchuk, D. N., Miryaha, V. A., Petrov, I. B., & Sannikov, A. V. (2016). Discontinuous Galerkin method for wave propagation in elastic media with inhomogeneous inclusions. Russian Journal of Numerical Analysis and Mathematical Modelling, 31. http://doi.org/10.1515/rnam-2016-0004
  18. Yavich, N., Pushkarev, P., & Zhdanov, M. S. (2016). Application of a Finite-difference Solver with a Contraction Preconditioner to 3D EM Modeling in Mineral Exploration. http://doi.org/10.3997/2214-4609.201602104
  19. Yavich, N., & Zhdanov, M. S. (2016). Contraction pre-conditioner in finite-difference electromagnetic modelling. Geophysical Journal International, 206, 1718–1729. http://doi.org/10.1093/gji/ggw237
  20. Zhdanov, M., & Cai, H. (2016). Redatuming controlled-source electromagnetic data using Stratton-Chu type integral transformations. Journal of Applied Geophysics, 126, 1–12. http://doi.org/10.1016/j.jappgeo.2016.01.003
  21. Муратов, М. В., & Петров, И. Б. (2016). Численное решение прямых задач сейсморазведки в трещиноватых средах. http://doi.org/10.3997/2214-4609.201601737

Публикации за 2017 год

  1. Gribenko, A. V., & Zhdanov, M. S. (2017). 3-D Inversion of the MT EarthScope Data, Collected Over the East Central United States. Geophysical Research Letters, 44(23), 11,800-11,807. http://doi.org/10.1002/2017GL075000
  2. Stognii, P. V, Petrov, D. I., Khokhlov, N. I., & Petrov, I. B. (2017). Simulation of seismic processes in geological exploration of Arctic shelf. Russian Journal of Numerical Analysis and Mathematical Modelling, 32(6), 381–392. http://doi.org/10.1515/rnam-2017-0036
  3. Cai, H., Hu, X., Xiong, B., & Zhdanov, M. S. (2017). Finite-element time-domain modeling of electromagnetic data in general dispersive medium using adaptive Padé series. Computers & Geosciences, 109, 194–205. http://doi.org/10.1016/j.cageo.2017.08.017
  4. Zhdanov, M. S., & Lin, W. (2017). Adaptive multinary inversion of gravity and gravity gradiometry data. GEOPHYSICS, 82(6), G101–G114. http://doi.org/10.1190/geo2016-0451.1
  5.  Petrov, I. B., Favorskaya, A. V, & Khokhlov, N. I. (2017). Grid-characteristic method on embedded hierarchical grids and its application in the study of seismic waves. Computational Mathematics and Mathematical Physics, 57(11), 1771–1777. http://doi.org/10.1134/S0965542517110112
  6. Cuma, M., & Zhdanov, M. S. (2017). Continental-scale joint inversion of Alaska and Yukon gravity and magnetic data. First Break, 35(9), 55–62. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029412121&partnerID=40&md5=0143d8320aacdc50b0e...
  7. Golubev, V. I., Voinov, O. Y., & Zhuravlev, Y. I. (2017). On seismic imaging of fractured geological media. Doklady Mathematics, 96(2), 514–516. http://doi.org/10.1134/S1064562417050088
  8. Čuma, M., Gribenko, A., & Zhdanov, M. S. (2017). Inversion of magnetotelluric data using integral equation approach with variable sensitivity domain: Application to EarthScope MT data. Physics of the Earth and Planetary Interiors, 270, 113–127. http://doi.org/10.1016/j.pepi.2017.06.003
  9. Cai, H., & Zhdanov, M. S. (2017). Joint Inversion of Gravity and Magnetotelluric Data for the Depth-to-Basement Estimation. IEEE Geoscience and Remote Sensing Letters, 14(8), 1228–1232. http://doi.org/10.1109/LGRS.2017.2703845
  10.  Favorskaya, A. V, & Petrov, I. B. (2017). Numerical modeling of dynamic wave effects in rock masses. Doklady Mathematics, 95(3), 287–290. http://doi.org/10.1134/S1064562417030139
  11. Zhdanov, M. S., Yoon, D., & Mattsson, J. (2017). Rapid Imaging of Towed Streamer EM Data Using the Optimal Synthetic Aperture Method. IEEE Geoscience and Remote Sensing Letters, 14(2), 262–266. http://doi.org/10.1109/LGRS.2016.2637919
  12. Endo, M., Zhdanov, M. S., Asakawa, E., Lee, S., Sumi, T., & Yamakawa, T. (2017). Application of time domain electromagnetic method for exploration of submarine hydrothermal deposits using the GEMTIP model. In 79th EAGE Conference and Exhibition 2017. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-85033241046&partnerID=40&md5=82fa2ddce262c4c72dd...
  13. Фаворская, А. В., & Голубев, В. И. (2017). About applying Rayleigh formula based on the Kirchhoff integral equations for the seismic exploration problems. Computer Research and Modeling, 9(5), 761–771. http://doi.org/10.20537/2076-7633-2017-9-5-761-771
  14. Malovichko, M. S., Yavich, N. B., & Zhdanov, M. S. (2017). Integrating electrical conductivity in 3D seismic inversion with Gramian constraints. In 79th EAGE Conference and Exhibition 2017. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-85033223791&partnerID=40&md5=b91090f4301e9b01cb7...
  15. Favorskaya, A., Petrov, I., & Grinevskiy, A. (2017). Numerical simulation of fracturing in geological medium. Procedia Computer Science, 112, 1216–1224. http://doi.org/10.1016/j.procs.2017.08.042
  16. Golubev, V. I., Voinov, O. Y., & Petrov, I. B. (2017). Migration of seismic data for multi-layered fractured geological media using elastic approach. In Geomodel 2017 - 19th Science and Applied Research Conference on Oil and Gas Geological Exploration and Development (Vol. 2017–September). Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048663348&partnerID=40&md5=7875060b4d75d7d1d14...
  17. Beklemysheva, K., Vasyukov, A., Ermakov, A., & Favorskaya, A. (2017). Numerical modeling of ultrasound beam forming in elastic medium. Procedia Computer Science, 112, 1488–1496. http://doi.org/10.1016/j.procs.2017.08.034
  18. Egiyan, V. S., Favorskaya, A. V., Mkrtchyan, A. A., Petrov, I. B., Khokhlov, N. I., & Golubev, V. I. (2017). NUMERICAL MODELING OF THE PROCESS OF DETECTION OF KARST CAVITIES IN RAILWAY EMBANKMENTS BY A GRID-CHARACTERISTIC METHOD. RADIOELECTRONICS. NANOSYSTEMS. INFORMATION TECHNOLOGIES, 9(2), 215–220. http://doi.org/10.17725/rensit.2017.09.215
  19. Astanin, A. V., Dashkevich, A. D., Petrov, I. B., Petrov, M. N., Utyuzhnikov, S. V., & Khokhlov, N. I. (2017). Modeling the influence of the Chelyabinsk meteorite’s bow shock wave on the Earth’s surface. Mathematical Models and Computer Simulations, 9(2), 133–141. http://doi.org/10.1134/S2070048217020028
  20. Favorskaya, A., Petrov, I., Golubev, V., & Khokhlov, N. (2017). Numerical simulation of earthquakes impact on facilities by grid-characteristic method. Procedia Computer Science, 112, 1206–1215. http://doi.org/10.1016/j.procs.2017.08.035
  21. Malovichko, M. S., Khokhlov, N. I., Yavich, N. B., & Zhdanov, M. S. (2017). Parallel integral equation method and algorithm for 3D seismic modelling. In 79th EAGE Conference and Exhibition 2017.
  22. Stognii, P., Petrov, D., Khokhlov, N., & Favorskaya, A. (2017). Numerical modeling of influence of ice formations under seismic impacts based on grid-characteristic method. Procedia Computer Science, 112, 1497–1505. http://doi.org/10.1016/j.procs.2017.08.040
  23. Yavich, N., Malovichko, M. S., Khokhlov, N., & Zhdanov, M. S. (2017). Advanced method of FD electromagnetic modeling based on contraction operator. In 79th EAGE Conference and Exhibition 2017.
  24.  Golubev, V. I., Gilyazutdinov, R. I., Petrov, I. B., Khokhlov, N. I., & Vasyukov, A. V. (2017). Simulation of dynamic processes in three-dimensional layered fractured media with the use of the grid-characteristic numerical method. Journal of Applied Mechanics and Technical Physics, 58(3), 539–545. http://doi.org/10.1134/S0021894417030191
  25. Malovichko, M., Khokhlov, N., Yavich, N., & Zhdanov, M. (2017). Approximate solutions of acoustic 3D integral equation and their application to seismic modeling and full-waveform inversion. Journal of Computational Physics, 346, 318–339. http://doi.org/10.1016/j.jcp.2017.06.021

Публикации за 2018 год

  1. Favorskaya, A. V., Zhdanov, M. S., Khokhlov, N. I., & Petrov, I. B. (2018). Modelling the wave phenomena in acoustic and elastic media with sharp variations of physical properties using the grid-characteristic method. Geophysical Prospecting, 66(8), 1485–1502. http://doi.org/10.1111/1365-2478.12639
  2. Favorskaya, A. V., Khokhlov, N. I., Golubev, V. I., Ekimenko, A. V., Pavlovskiy, Y. V., Khromova, I. Y., & Petrov, I. B. (2018). Wave Processes Modelling in Geophysics (pp. 187–218). http://doi.org/10.1007/978-3-319-76201-2_7
  3. Favorskaya, A., Golubev, V., & Khokhlov, N. (2018). Two approaches to the calculation of air subdomains: theoretical estimation and practical results. Procedia Computer Science, 126, 1082–1090. http://doi.org/10.1016/j.procs.2018.08.045
  4. Golubev, V., Khokhlov, N., Grigorievyh, D., & Favorskaya, A. (2018). Numerical simulation of destruction processes by the grid-characteristic method. Procedia Computer Science, 126, 1281–1288. http://doi.org/10.1016/j.procs.2018.08.071
  5. Golubev, V. I., & Khokhlov, N. I. (2018). Estimation of anisotropy of seismic response from fractured geological objects. Computer Research and Modeling, 10(2), 231–240. http://doi.org/10.20537/2076-7633-2018-10-2-231-240
  6. Favorskaya, A., & Khokhlov, N. (2018). Modeling the impact of wheelsets with flat spots on a railway track. Procedia Computer Science, 126, 1100–1109. http://doi.org/10.1016/j.procs.2018.08.047
  7. Иванов, А. М., & Хохлов, Н. И. (2018). Parallel implementation of the grid-characteristic method in the case of explicit contact boundaries. Computer Research and Modeling, 10(5), 667–678. http://doi.org/10.20537/2076-7633-2018-10-5-667-678
  8. Malovichko, M., Khokhlov, N., Yavich, N., & Zhdanov, M. (2018). Acoustic 3D modeling by the method of integral equations. Computers & Geosciences, 111, 223–234. http://doi.org/10.1016/j.cageo.2017.11.015
  9. Favorskaya, A. V., Zhdanov, M. S., Khokhlov, N. I., & Petrov, I. B. (2018). Modelling the wave phenomena in acoustic and elastic media with sharp variations of physical properties using the grid-characteristic method. Geophysical Prospecting, 66(8), 1485–1502. http://doi.org/10.1111/1365-2478.12639
  10. Favorskaya, A. V., & Petrov, I. B. (2018). Numerical Modeling of Wave Processes in Rocks by the Grid-Characteristic Method. Mathematical Models and Computer Simulations, 10(5), 639–647. http://doi.org/10.1134/S207004821805006X
  11. Favorskaya, A. V., & Petrov, I. B. (2018). Study of Seismic Isolation by Full-Wave Numerical Modeling. Doklady Earth Sciences, 481(2), 1070–1072. http://doi.org/10.1134/S1028334X18080135
  12. Favorskaya, A. V., Kabisov, S. V., & Petrov, I. B. (2018). Modeling of Ultrasonic Waves in Fractured Rails with an Explicit Approach. Doklady Mathematics, 98(1), 401–404. http://doi.org/10.1134/S1064562418050022
  13. Favorskaya, A. V. (2018). Interpolation on Unstructured Triangular Grids (pp. 7–44). http://doi.org/10.1007/978-3-319-76201-2_2
  14. Favorskaya, A. (2018). The use of multiple waves to obtain information on an underlying geological structure. Procedia Computer Science, 126, 1110–1119. http://doi.org/10.1016/j.procs.2018.08.048
  15. Favorskaya, A. V. (2018). Interpolation on Unstructured Tetrahedral Grids (pp. 45–73). http://doi.org/10.1007/978-3-319-76201-2_3
  16. Favorskaya, A. V. (2018). Piecewise Linear Interpolation on Unstructured Tetrahedral Grids (pp. 75–115). http://doi.org/10.1007/978-3-319-76201-2_4
  17. Favorskaya, A. V., & Zhdanov, M. S. (2018). Migration of Elastic Fields Based on Kirchhoff and Rayleigh Integrals (pp. 241–265). http://doi.org/10.1007/978-3-319-76201-2_9
  18. Favorskaya, A. V., & Petrov, I. B. (2018). Theory and Practice of Wave Processes Modelling (pp. 1–6). http://doi.org/10.1007/978-3-319-76201-2_1
  19. Favorskaya, A. V., & Petrov, I. B. (2018). Grid-Characteristic Method (pp. 117–160). http://doi.org/10.1007/978-3-319-76201-2_5
  20. Favorskaya, A., Golubev, V., & Grigorievyh, D. (2018). Explanation the difference in destructed areas simulated using various failure criteria by the wave dynamics analysis. Procedia Computer Science, 126, 1091–1099. http://doi.org/10.1016/j.procs.2018.08.046
  21. Golubev, V. I., Voinov, O. Y., & Petrov, I. B. (2018). Seismic Imaging of Fractured Elastic Media on the Basis of the Grid-Characteristic Method. Computational Mathematics and Mathematical Physics, 58(8), 1309–1315. http://doi.org/10.1134/S0965542518080080
  22. Voynov, O. Y., Golubev, V. I., Zhdanov, M. S., & Petrov, I. B. (2018). Migration of Elastic Wavefield Using Adjoint Operator and Born Approximation (pp. 219–240). http://doi.org/10.1007/978-3-319-76201-2_8
    Malovichko, M., Khokhlov, N., Yavich, N., & Zhdanov, M. (2018). Acoustic 3D modeling by the method of integral equations. Computers and Geosciences, 111(April 2017), 223–234. http://doi.org/10.1016/j.cageo.2017.11.015

Если вы заметили в тексте ошибку, выделите её и нажмите Ctrl+Enter.

МФТИ в социальных сетях