Одним из главных принципов уникальной «системы Физтеха», заложенной в основу образования в МФТИ, является тщательный отбор одаренных и склонных к творческой работе представителей молодежи. Абитуриентами Физтеха становятся самые талантливые и высокообразованные выпускники школ всей России и десятков стран мира.

Студенческая жизнь в МФТИ насыщенна и разнообразна. Студенты активно совмещают учебную деятельность с занятиями спортом, участием в культурно-массовых мероприятиях, а также их организации. Администрация института всячески поддерживает инициативу и заботится о благополучии студентов. Так, ведется непрерывная работа по расширению студенческого городка и улучшению быта студентов.

Адрес e-mail:

Ипатова Валентина Михайловна

Кандидат физико-математических наук

Доцент кафедры высшей математики

Эл. почта: ipatval@mail.ru

Образование

1982 г. — МФТИ.

1993 г. — Кандидатская диссертация «Построение сопряженных уравнений в нелинейных задачах параболического типа и их приложения в оптимальном управлении».

Профессиональные интересы

Задачи вариационной ассимиляции данных, аттракторы аппроксимаций неавтономных систем.

Учебные курсы

Математический анализ, теория вероятностей, аналитическая геометрия и линейная алгебра, дифференциальные уравнения.

Публикации

1. В.М.Ипатова. Об аттракторах аппроксимаций неавтономных эволюционных уравнений // Математический сборник. – 1997. – Т.188, № 6. – С.47–56. 

2. В.И.Агошков, В.М.Ипатова. Разрешимость одной задачи вариационного усвоения данных наблюдений // Доклады Академии наук.. – 1998. – Т. 360, №4. – C. 439 – 441. 

3. В.И.Агошков, В.М.Ипатова. Теоремы существования для трехмерной модели динамики океана и задачи ассимиляции данных // Доклады Академии наук. – 2007. – Т.412, № 2. – С.151–153. 

4. V.M.Ipatova. Solvability of the ocean hydrothermodynamics problem under a nonlinear state equation // Russian Journal of Numerical Analysis and Mathematical Modelling. – 2008. – V. 23, No. 2. – P.185–196. 

5. В.М.Ипатова. О равномерных аттракторах явных аппроксимаций // Дифференциальные уравнения. – 2011. – Т.47, № 4. – С.574–583.

Если вы заметили в тексте ошибку, выделите её и нажмите Ctrl+Enter.

© 2001-2016 Московский физико-технический институт
(государственный университет)

Техподдержка сайта

МФТИ в социальных сетях

soc-vk soc-fb soc-tw soc-li soc-li
Яндекс.Метрика