Array

Сверхпроводимость против ферромагнетизма — сыграли вничью

Российские физики из МФТИ совместно с иностранными коллегами провели пионерские экспериментальные исследования вещества, одновременно сочетающего свойства сверхпроводника и ферромагнетика. Учёные представили и аналитическое решение, описывающее уникальные фазовые превращения в таких ферромагнитных сверхпроводниках. Работа опубликована в журнале Science Advances.


Ферромагнитные сверхпроводники

Международная группа исследователей изучила монокристаллическое соединение на основе европия, железа и мышьяка, допированного фосфором, — EuFe₂(As0.79P0.21)₂. Данный кристалл при охлаждении до 24 кельвинов (−249,15 °С) становится сверхпроводником и полностью утрачивает электрическое сопротивление. Кроме того, при дальнейшем охлаждении ниже 18 К это же соединение демонстрирует ферромагнитные свойства: в частности, проявляет спонтанную намагниченность в отсутствие внешнего магнитного поля (как железо, из которого делают постоянные магниты).

Самое удивительное, что ферромагнетизм при этом не разрушает сверхпроводимость. Такое сосуществование магнетизма и сверхпроводимости давно привлекает внимание как теоретиков, так и учёных, занятых поиском перспективных материалов для обычной и сильноточной, рассчитанной на управление очень большими токами, электроники.

Рисунок 1. Схематическое изображение зарождения пары вихрь — антивихрь под воздействием спонтанных экранирующих (мейснеровских) токов при понижении температуры ниже критической температуры ферромагнитного перехода. Жирные стрелки показывают направление векторов намагниченности, а тонкие стрелки (в сечении обозначенные как кружок с крестом и кружок с кружком внутри) обозначают направление тока

С теоретической точки зрения ферромагнитные сверхпроводники интересны тем, что в разных диапазонах температур проявляют разные свойства. Не вдаваясь подробно в теорию сверхпроводимости, отметим, что обычные сверхпроводники формально являются идеальными диамагнетиками: на их поверхности под действием внешнего магнитного поля возникают экранирующие токи, которые создают противоположно направленный внешнему магнитному полю магнитный момент. Таким образом, магнитное поле внутрь сверхпроводника не проникает. Магнитные свойства веществ тесно связаны с их электрическими характеристиками, поэтому «не такие» сверхпроводники оказались в фокусе внимания учёных: их изучение позволяет лучше понять природу сверхпроводимости как макроскопического квантового явления. А может помочь и при создании пока кажущихся фантастическими сверхпроводников, работающих при температурах, близких к комнатной.

В ферромагнитных же веществах при температуре ниже точки Кюри естественным образом возникает структура из намагниченных участков (доменов). Точка Кюри — температура, ниже которой вещество проявляет ферромагнитные свойства. Если ферромагнетик нагреть сильнее, его структура перестраивается и он перестаёт намагничиваться. Это свойство позволяет создавать различные полезные устройства, которые оперируют намагниченностью для хранения и обработки информации. Магнитофонная лента и жёсткий диск компьютера — пожалуй, самые известные примеры. Сочетание сверхпроводимости и ферромагнетизма может быть перспективно с практической точки зрения, однако для целенаправленного поиска технологических решений инженерам и физикам нужно иметь детальное представление о процессах, происходящих в подобных системах.

Рисунок 2. Структура кристаллической решётки исследованного соединения. Розовыми сферами обозначены атомы мышьяка и фосфора, синими — атомы европия, а жёлтыми — железа


Новая фаза Мейснера

Для получения информации о том, что происходит на поверхности изучаемого кристалла, учёные использовали методы магнитно-силовой микроскопии. Магнитно-силовая микроскопия позволяет получить карту пространственного распределения магнитного поля вблизи поверхности образца с высоким разрешением и таким образом увидеть при различных температурах как магнитные домены (при температуре ниже точки Кюри, ~ 18 К), так и характерные для сверхпроводника вихри Абрикосова (при температуре 19–24 К). Кроме того, когда образец имел температуру в диапазоне 17,8–18,25 К (то есть чуть ниже точки Кюри), в нём обнаружилась новая фаза, проявляющаяся в виде «мейснеровских доменов».

Эффект Мейснера — Оксенфельда — выталкивание внешнего магнитного поля при переходе в сверхпроводящее состояние. Сверхпроводник сопротивляется проникновению силовых линий магнитного поля в объём материала. В результате внешнее магнитное поле генерирует в тонком приповерхностном слое вещества сверхпроводящие (мейснеровские) токи.

В данном исследовании экспериментально было обнаружено существование новой фазы эффекта Мейснера — «мейснеровских доменов» (периодическая структура, обусловленная спонтанными мейснеровскими токами, генерируемыми в результате экранирования внутренней магнитной подсистемы атомов европия) и последующей трансформации в «вихревые домены». Этот переход был обусловлен квантованием спонтанных магнитных потоков, направленных в противоположные стороны внутри мейснеровских доменов при достижении критического для данного сверхпроводника значения магнитного поля.

Рисунок 3. Снимки с помощью магнитно-силовой микроскопии (размер карт 8х8 микрон) образца при разных температурах. На иллюстрации D  изображено обычное вихревое состояние из вихрей Абрикосова при Tfm<T<Tc, генерируемое внешним магнитным полем, присущим всем сверхпроводникам второго рода, на картинке E — состояние мейснеровских доменов, на картинке F — состояние вихревых доменов. Схемы в нижнем ряду иллюстрируют те же случаи; js обозначен сверхпроводящий ток, а M — магнитный момент. Изображение из статьи исследователей

Меняя в процессе эксперимента температуру, учёные смогли проследить за переходом образца из одной фазы в другую.

Рисунок 4. Образец в процессе охлаждения. Жёлтыми стрелками показано зарождение и перемещение пары вихрь — антивихрь; исследователи отмечают, что это происходит в местах, где до этого отмечалась некая неоднородность: либо уже имелся вихрь, либо Y-образная «развилка» в магнитных мейснеровских доменах. Изображение авторов исследования

Результаты прокомментировал Василий Столяров, заместитель руководителя лаборатории топологических квантовых явлений в сверхпроводящих системах МФТИ и первый автор статьи:  «Впервые в мире мы продемонстрировали, что происходит на поверхности недавно открытых ферромагнитных сверхпроводников. Впервые были обнаружены так называемые „мейснеровские домены“, а также фазовый переход от „мейснеровских доменов“ к „вихревым доменам“ — это происходит, когда в мейснеровских доменах начинают зарождаться спонтанные пары вихрей и антивихрей Абрикосова, компенсирующие экранирующие токи Мейснера в соседних доменах. Спонтанное зарождение пар вихрей и антивихрей Абрикосова в однородном сверхпроводнике ранее никем обнаружено не было, хотя их возможное существование было предсказано теоретически и косвенно из электронно-транспортных исследований.

Наши результаты открывают новую страницу в современной физике сверхпроводимости, они дают почву для будущих фундаментальных теоретических и экспериментальных исследований процессов, протекающих в сверхпроводниках на атомном масштабе. Мы готовим ряд научных статей по проведённым исследованиям на такого типа материалах, и данная публикация является первой в своем роде».


Исследователь добавил, что переход материала из одной фазы в другую можно использовать для управления процессами внутри сверхпроводника. В частности, это явление может помочь управлять вихрями Абрикосова в кристалле и создавать отдельные пары вихрь — антивихрь, что может быть использовано при разработке электронных устройств на основе гибридных сверхпроводящих материалов.