Учёные МФТИ и ФИАН изучат влияние примесных атомов на цвет и спектральные свойства алмазов методом атомистическом моделирования с применением методов машинного обучения. Исследование внесёт вклад в развитие микроэлектроники, включая разработку высокоустойчивых кубитов для квантовых компьютеров и инновационных ячеек памяти. Ожидается, что результаты работы окажут значительное влияние на дальнейшее развитие вычислительных технологий и смежных областей.
Примеси в алмазе могут оказывать значительное влияние не только на цвет, но и на электромагнитные свойства минерала. Это делает их весьма перспективными для использования в микроэлектронике. В частности, на основе примесных центров в алмазе уже разрабатываются кубиты для квантовых компьютеров, обладающие высокой устойчивостью. Также примеси могут быть использованы в создании ячеек памяти, что откроет новые возможности для хранения информации и обработки данных.
Кроме того, исследование примесей в алмазах имеет прикладное значение, включая лазерную маркировку минералов. Ученые из Лаборатории лазерной нанофизики и биомедицины ФИАН активно ведут эксперименты в этой области, используя фемтосекундный лазерный нагрев для инициирования перестроек в алмазных дефектах. Это позволяет создавать уникальные маркировки и улучшать свойства алмазов. Команда МФТИ, в свою очередь, занимается предсказанием, как именно протекают эти перестройки на атомистическом уровне, что является важным шагом для оптимизации технологий.
Примесные дефекты в алмазе, такие как NV-центры, уже используются для создания кубитов для квантовых компьютеров, которые отличаются высокой устойчивостью, а также в разработке ячеек памяти. А ещё, генерируя или разрушая такие дефекты, можно создавать невидимые глазу маркировки на коммерческих алмазах – это задача, которой занимаются наши соавторы из Лаборатории лазерной нанофизики и биомедицины ФИАН под руководством Сергея Ивановича Кудряшова. Они используют фемтосекундный лазерный нагрев для инициирования перестроек в алмазных дефектах, а наша команда предсказывает сценарии этих изменений»
По словам ученых, ещё десять лет назад подобные исследования были практически невозможны, даже для суперкомпьютеров. Однако благодаря синтезу методов машинного обучения и атомистического моделирования, задачи, которые ранее казались неподъёмными, стали вполне реальными. Это открывает новые перспективы не только для фундаментальной науки, но и для прикладных исследований, позволяя создавать новые материалы с заранее заданными свойствами.
Ожидается, что результаты работы учёных будут иметь значительное влияние на развитие микроэлектроники и смежных технологий. Применение алмазов с заданными свойствами в квантовых компьютерах и других устройствах может привести к существенным улучшениям в области вычислительных технологий, что, в свою очередь, повлияет на множество отраслей, включая телекоммуникации, медицину и бытовую электронику.
Исследование поддержано грантом РНФ № 25-73-20143