Адрес e-mail:

Учёные составили полный атлас микроРНК — важных регуляторных молекул


рнкрнк.png

Международный консорциум, в который входили российские учёные из ИОГен РАН и МФТИ, разработал атлас микроРНК человека и мыши. МикроРНК играют важную роль в регуляции генов и дифференциации клеток, и они уже почти все известны науке. Однако про то, какие участки генома участвуют в регуляции самих микроРНК, было известно мало. Учёные нашли эти участки с помощью специального алгоритма, определили активность всех микроРНК в разных тканях и результаты выложили в открытый доступ. Научная работа опубликована в журнале Nature Biotechnology.

рнк_микро.png

Рис. 1. Работа микроРНК. Если микроРНК «садится» на информационную РНК, то синтез белка с иРНК блокируется


«МикроРНК представляют собой один из важнейших механизмов регуляции экспрессии генов. Создание полного атласа микроРНК в различных клетках приближает нас ещё на один шаг к созданию полной картины регуляции генов»,  комментирует Юлия Медведева, один из соавторов работы, старший научный сотрудник Центра биотехнологий РАН, преподаватель кафедры биоинформатики МФТИ.


МикроРНК — это маленькая молекула РНК длиной около 20 нуклеотидов, которая участвует в регуляции работы генов. В разных тканях необходима активность разного набора генов, а ненужные гены «глушат» молекулы микроРНК. Они являются как бы маленькими полицейскими, которые узнают ген, который не должен работать в этой ткани, и блокируют его. При многих болезнях наблюдаются отклонения в работе микроРНК, поэтому сейчас разрабатывается терапия анти-микроРНК, например, от рака. Кроме того, молекулы микроРНК можно использовать в качестве лекарства, так как с их помощью можно подавить синтез плохих белков. Однако про то, как регулируется сама микроРНК, известно очень мало.


Звенья РНК  нуклеотиды аденин (A), цитозин (C), гуанин (G), урацил (U)  могут образовывать связи C-G, A-U и G-U. Например, последовательности CCUA и GGGU смогут связываться и будут называться комплементарными, а CCUA и UCCG не будут комплементарны. МикроРНК связывается с почти комплементарным ей участком РНК и таким образом не даёт синтезировать белок с этого участка.


Ещё лет 30 назад про микроРНК никто не знал. Только в 1993 году была описана первая представительница этих некодирующих РНК, то есть молекул РНК, на основе которых не производятся белки. РНК — это одноцепочечная молекула, состоящая из звеньев-нуклеотидов. Она получается из ДНК — двухцепочечной молекулы, в которой зашифрована последовательность РНК. На основе ДНК получаются все РНК: и кодирующие (матричные или информационные РНК), и некодирующие — перевод из ДНК в РНК называется транскрипцией. Информационная РНК служит «рецептом», по которому производятся белки, а некодирующие РНК участвуют в «приготовлении» белка. Все РНК, чтобы выполнять свои функции, должны пройти несколько стадий созревания. Так, специальные белки вырезают из молекулы РНК длиной около 80-ти нуклеотидов маленький кусочек, и получается микроРНК. Говорят, что микроРНК вырезается из предшественника микроРНК, или пре-микроРНК (см. рис. 2).  

рнк_2.png

Рис. 2. Предшественники первой открытой микроРНК (сверху) и первой открытой микроРНК у человека (снизу). Хоть РНК  одноцепочечная молекула, она не обязательно прямая. Так, предшественники микроРНК имеют форму шпильки. Красный участок  это будущая микроРНК. Источник: https://commons.wikimedia.org/w/index.php?curid=34741240


Транскрипция начинается с того, что специальные белки (транскрипционные факторы) садятся на стартовую площадку — участок ДНК рядом с геном, — которая называется промотором. У предшественников микроРНК тоже есть промоторы, однако до сих пор многие из них не были определены достаточно точно. По этой причине было сложно изучать регуляцию микроРНК, хотя большинство микроРНК и их предшественники уже известны. МикроРНК тканеспецифичны: в одних тканях экспрессируются (переводятся из ДНК в РНК) предшественники одних микроРНК, а в других тканях — других. Благодаря этому клетки в разных тканях обладают разными свойствами (потому что разные наборы генов блокируются).

2017-09-13_17-13-55 (2).png

Рис. 3. Интерактивная карта экспрессии. Сверху типы тканей, справа — микроРНК, на пересечении — уровень экспрессии данной РНК в данной ткани. С сайта атласа


Группа учёных составила полный атлас микроРНК с промоторами их предшественников в разных тканях. Работа проводилась в рамках большого исследовательского проекта FANTOM5 (Functional annotation of the mammalian genome — функциональная характеристика генома млекопитающих), который собирает и анализирует данные о функциональных элементах в геноме мыши и человека. Ранее они разработали технологию (CAGE, Cap Analysis of Gene Expression), с помощью которой можно находить промоторы в геноме. Они сопоставили данные о промоторах с данными о коротких РНК и для каждой микроРНК определили предшественника и его промотор. Многие микроРНК были описаны ранее, а некоторые новые микроРНК нашли с помощью специального алгоритма. Кроме этих данных, атлас содержит карту экспрессии предшественников всех микроРНК в более, чем ста видах тканей человека. По этой карте можно посмотреть, в каких тканях какие микроРНК играют свою регулирующую роль.


Всеволод Макеев, один из соавторов работы, профессор кафедры биоинформатики МФТИ поясняет: «Когда вы знаете, где находится промотор, вы можете, во-первых, пытаться понять, в какие регуляторные каскады эта микроРНК включена. А во-вторых, если у человека есть мутации на том участке, где находится промотор, у него могут быть какие-то нарушения регуляции, и вы будете об этом знать, а в будущем даже, возможно, исправлять эти нарушения».


Если вы заметили в тексте ошибку, выделите её и нажмите Ctrl+Enter.

МФТИ в социальных сетях

soc-vk soc-fb soc-tw soc-li soc-li soc-yt
Яндекс.Метрика