Адрес e-mail:
Прошедшие события
Общефизический научный семинар состоится 23 сентября
Лекция о моделировании заболеваний ЦНС на рыбках данио-рерио
Панельная онлайн-дискуссия на тему «Новая волна. Акселерация будущего»
Онлайн-собрание ректората и студенческого актива института
AI 2020: технологии, рынок и управление продуктами
Родительское собрание в МФТИ
Летняя онлайн-школа «Всероссийский навигатор абитуриентов МФТИ»
Фазли Атауллаханов: «Физика свертывания крови и COVID-19»
Юрий Яровиков: «Какая математика нужна в анализе данных?»
Михаил Бурцев — об экспериментах с Memory Transformer
Даниил Поляков: «Мощь Python на все случаи жизни»
Презентация магистерской программы «Биоинформатика» ФБМФ и Napoleon IT
Александр Львовский: «Квантовая революция как мировой технологический тренд»
Выпускной МФТИ 2020: онлайн-формат не отменяет праздник
Директор ФИАН Николай Колачевский: «Наука и технологии: путь в лидерство»
Онлайн-презентация кафедры космической физики ЛФИ
Сессия вопросов-ответов с биоинформатиком Антоном Буздиным
Презентация магистерской программы «Физика сверхпроводимости и квантовых материалов»
Презентация магистерской программы «Двумерные материалы: физика и технология наноструктур»
Презентация магистерской программы «Цифровые технологии в бизнесе»

Лекция Рейнгарда Дистеля: «Graphs, tangles, and the Mona Lisa»

опубликовано: 21.03.2017
Лекция Рейнгарда Дистеля: «Graphs, tangles, and the Mona Lisa»
27 марта в 19:00 в Большой Химической аудитории Лабораторного корпуса МФТИ состоится лекция профессора Гамбургского университета (Universität Hamburg), специалиста мирового уровня в области теории графов Рейнгарда Дистеля на тему «Graphs, tangles, and the Mona Lisa».

Abstract

Tangles, first introduced by Robertson and Seymour in their work on graph minors, are a radically new way to define regions of high connectivity in a graph. The idea is that, whatever that highly connected region might `be', low-order separations of the graph cannot cut through it, and so it will orient them: towards the side of the separation on which it lies. A tangle, thus, is simply a consistent way of orienting all the low-order separations in a graph. 

The new paradigm this brings to connectivity theory is that such consistent orientations of all the low-order separations may, in themselves, be thought of as highly connected regions: rather than asking exactly which vertices or edges belong to such a region, we only ask where it is, collecting pointers to it from all sides. 

Pixellated images share this property: we cannot tell exactly which pixels belong to the Mona Lisa's nose, rather than her cheek, but we can identify `low-order' separations of the picture that do not cut right through such features, and which can therefore be used collectively to delineate them. 

This talk will outline a general theory of tangles that applies not only to graphs and matroids but to a broad range of discrete structures. Including, perhaps, the pixellated Mona Lisa.
Если вы заметили в тексте ошибку, выделите её и нажмите Ctrl+Enter.

© 2001-2020 Московский физико-технический институт (национальный исследовательский университет)

Противодействие коррупции | Сведения о доходах

Политика обработки персональных данных МФТИ

Техподдержка сайта | API

Использование новостных материалов сайта возможно только при наличии активной ссылки на https://mipt.ru

МФТИ в социальных сетях