Laboratory for the Physics of Complex Quantum Systems

at Moscow Institute of Physics and Technology

Welcome to the Laboratory for the Physics of Complex Quantum Systems!

The Laboratory was established by MIPT in May of 2020. We pursue theoretical studies of the complex behavior of many-particle quantum systems with a particular focus on the phenomenon of dynamic thermalization and on the properties of strongly correlated electronic systems.

Dynamic thermalization

In the past two decades, experimental advances in dealing with systems consisting of 10-1000 quantum particles allowed one to probe the behavior of thermodynamically isolated many-body quantum systems. This research direction is becoming increasingly relevant as the size of the functional elements in electronics is approaching the scale of nanometers. Efforts to create quantum computers and quantum simulators are also making steady progress. The above developments have stimulated an explosion of theoretical activity on the subject of thermalization in isolated quantum systems. The theoretical challenge here is to predict the statistical behavior that actually emerges dynamically in the course of preparation and manipulation of quantum systems. Unconventional statistical behavior may become either performance-limiting or performance-enhancing factor for quantum devices.

The subject of our special expertise within the broader dynamic thermalization agenda is the dynamics of nuclear spin systems measured by the experimental technique of nuclear magnetic resonance (NMR).

Quantum phenomena in strongly-correlated electronic systems: high-temperature superconductors, spin- and charge-density waves
Superconductivity is a fascinating macroscopic phenomenon of essentially quantum origin. High-temperature superconductivity in cuprates is a grand challenge to the condensed matter community. Understanding its mechanism is important both for technological applications and for deepening the fundamental knowledge about condensed matter systems. It absolutely cannot be excluded that, at some point in the future, a room-temperature superconductor will be discovered. Likewise, the research on the diagnostics and manipulation of materials exhibiting spontaneously formed spin- and charge-density waves has significant and still unexploited potential for applications in electronics.

Our current investigations include (i) the interplay between superconductivity and the spontaneous modulations of electronic density, and (ii) the nonequilibrium behavior of the spin- and charge-density waves.

The Laboratory is funded by the program 5-100, and by grant of the Russian Science Foundation - Projeсt №17-12-01587.
Laboratory's publications since August, 2020
Seminar on Physics of Complex Quantum Systems

Click on the photos of the Laboratory members for more information.

Boris Fine

Head of the Laboratory, Dr. Habil.
Professor, Principal Scientist

1994, M.S., Department of General and Applied Physics, Moscow Institute of Physics and Technology .

 2000, Ph.D., Department of Physics, University of Illinois at Urbana-Champaign,
                       Ph.D. thesis title: ``Theory of high-temperature spin dynamics.''   
                       Advisor: A. J. Leggett

 2013, Habilitation, Department of Physics and Astronomy, University of Heidelberg.
Professional experience
Boris is a theoretical physicist specializing in the field of Solid-State Physics. His research interests include nuclear magnetic resonance, high-temperatures superconductivity, and a broader set of topics associated with the foundations of quantum statistical physics and the role of chaos in many-particle systems. Boris graduated from the Moscow Institute of Physics and Technology in 1994. In 2000, he obtained his Ph.D. degree from the University of Illinois at Urbana-Champaign. In 2020, after an international career in physics research and education,  Boris became the head of the newly established MIPT Laboratory for the Physics of Complex Quantum Systems.

CV of Boris Fine

Interview:  "Mystique of the solid-state", Novaya gazeta [in Russian]

Talk “Chaotic properties of spin lattices at high temperatures” at Simons Center for Geometry and Physics [in English]

Lecture “Chaos” [in Russian]

Lecture “Superconductivity” [in Russian]
Academic Interests
  • - Dynamics-to-statistics and quantum-to-classical transition in nonequilibrium many-body systems; chaos, decoherence, foundations of quantum statistical physics;

- Spin dynamics, spin-spin relaxation in nuclear magnetic resonance (NMR);

- High-temperature superconductivity, spin- and charge-density waves in strongly correlated electronic systems



[55] P. E. Dolgirev, A.V. Rozhkov, A. Zong, A. Kogar, N. Gedik, and B. V. Fine, Amplitude dynamics of charge density wave in LaTe3: theoretical description of pump-probe experiments, Phys. Rev. B 101, 054203 (2020), eprint arXiv:1904.09795

[54] G. A. Starkov and B. V. Fine, Free induction decays in nuclear spin-1/2 lattices with small number of interacting neighbors: the cases of silicon and fluorapatite, Phys. Rev. B 101, 024428 (2020), eprint arXiv:1911.00990

[53]  A. V. Aristova, V. K. Bhartiya and B. V. Fine, Modeling superconductivity in the background of a spin-vortex checkerboard, Phys. Rev. B 100, 174503 (2019) e-print arXiv:1703.09979

[52] S. A. Romanov, A. E. Aliev, B. V. Fine,  A. S. Anisimov, and A. G. Nasibulin, Highly efficient thermophones based on freestanding single-walled carbon nanotube films, Nanoscale Horizons 4, 1158 (2019).

[51] A. Zong, A. Kogar, Y.-Q. Bie, T. Rohwer, Ch. Lee, E. Baldini, E. Ergeçen, M. B. Yilmaz, B. Freelon, E. J. Sie, H. Zhou, J. Straquadine, P. Walmsley, P. E. Dolgirev, A. V. Rozhkov, I. R. Fisher, P. Jarillo-Herrero, B. V. Fine, N. Gedik, Evidence of topological defects in a photo-induced phase transition, Nature Physics 15, 27 (2019) (e-print arXiv:1806.02766 )

[50]  P. Navez, G. A. Starkov, B. V. Fine, Classical spin simulations with a quantum two-spin correction, Eur. Phys. J. Spec. Top. 227, 2013 (2019). eprint arXiv:1812.02155

[49] G. A. Starkov, B. V. Fine , Hybrid quantum-classical method for simulating high-temperature dynamics of nuclear spins in solids, Physical Review B 98, 214421 (2018)    e-print arXiv:1806.09355

[48] A. E. Tarkhov, B. V. Fine, Estimating ergodization time of a chaotic many-particle system from a time reversal of equilibrium noise, New J. Phys. 20 123021 (2018) e-print arXiv:1804.09732 (2018)

[47] O. Lychkovskiy, B. V. Fine, Spin excitation spectrum of high-temperature cuprate superconductors from finite cluster simulations, J. Phys.: Condens. Matter 30 405801, (2018). (e-print arXiv:1712.09979 ) (2018).

[46] K. Ji, B. V. Fine, Suppression of heating in quantum spin clusters under periodic driving as a dynamic localization effect,  Phys. Rev. Lett. 121, 050602 (2018) (e-print arXiv:1712.10028)

[45] W. Hahn, B. V. Fine, Quantifying Stability of Quantum Statistical Ensembles, J. Stat. Mech: Theory and Experiment 2018, 023107 (2018)   (e-print arXiv:1706.04751)

[44] F. Kolley, O. Bohigas and B. V. Fine, Quantum Quenches with Random Matrix Hamiltonians and Disordered Potentials, Ann. Phys. (Berlin) 2017, 1700009 (2017) (e-print arXiv:1209.2954)

[43] A. E. Tarkhov, S. Wimberger and B. V. Fine, Extracting Lyapunov exponents from the echo dynamics of Bose-Einstein condensates on a lattice, Phys. Rev. A 96, 023624 (2017) (e-print arXiv:1705.08176)

[42] P. E. Dolgirev and B. V. Fine, Pseudogap and Fermi surface in the presence of a spin-vortex checkerboard for 1/8-doped lanthanum cuprates, Phys. Rev. B 96, 075137 (2017) (e-print arXiv:1705.08542)

[41] W. Hahn and B. V. Fine, Thermalization as an invisibility cloak for fragile quantum superpositions, Phys. Rev. A 96, 012119 (2017) (e-print arXiv:1705.06467)

[40] C. M. Kropf, J. Kohlrautz, J. Haase, and B. V. Fine,  Anomalous longitudinal relaxation of nuclear spins in CaF2, ,  Fortschr. Phys. 65, 1600023(2017) / DOI 10.1002/prop.201600023  (e-print arXiv:1510.06589 )

*[39] W. Hahn, B.V. Fine, Stability of quantum statistical ensembles with respect to local measurements, Phys. Rev. E 94, 062106 (2016) (e-print arXiv:1601.06402)

[38] B. V. Fine, Comment on “Broken translational and rotational symmetry via charge stripe order in underdoped YBa2Cu3O6+y”,  Science 351, 235-a (2016) (e-print arXiv:1602.00888)

[37] A. S. de Wijn, B. Hess, B. V. Fine, Chaotic properties of spin lattices near second-order phase transitions, Phys. Rev. E 92, 062929 (2015) (eprint arXiv:1410.5599)

[36] T. A. Elsayed and B. V. Fine, Sensitivity to small perturbations in systems of large quantum spins, Phys. Scr. 2015 014011, (2015) (eprint arXiv:1409.4763

[35] T. A. Elsayed and B. V. Fine, Effectiveness of classical spin simulations for describing NMR relaxation of quantum spins, Phys. Rev. B 91, 094424 (2015)  (eprint arXiv:1409.8564)

[34] T. A. Elsayed, B. Hess and B. V. Fine, Signatures of chaos in time series generated by many-spin systems at high temperatures, Phys. Rev. E 90, 022910 (2014) (eprint arXiv:1105.4575 )

[33]  B. V. Fine, T. A. Elsayed, C. M. Kropf, and A. S. de Wijn, Absence of exponential sensitivity to small perturbations in nonintegrable systems of spins 1/2, Phys. Rev. E 89, 012923 (2014)  (eprint arXiv:1305.2817 )

[32]  A. S. de Wijn, B. Hess, and B. V. Fine, Lyapunov instabilities in lattices of interacting classical spins at infinite temperature, J. Phys. A: Math. Theor. 46  254012 (2013) [Special issue on Lyapunov analysis] (2013) eprint  arXiv:1209.1468

*[31]  T. A. Elsayed, B. V. Fine,  Regression relation for pure quantum states and its implications for efficient computing, Phys. Rev. Lett. 110, 070404 (2013)  (eprint  arXiv:1208.4652 )

[30] J. G. Brandenburg and B. V. Fine, Dimensionality of spin modulations in 1/8-doped lanthanum cuprates from the perspective of NQR and muSR experiments,  J. Supercond. Nov. Magn. 26, 2621 (2013) (eprint arXiv:1209.1934 )

[29] B. V. Fine and F. Hantschel, An alternative to the conventional micro-canonical ensemble, Physica Scripta T151, 014078 (2012) (eprint arXiv:1010.4673)

[28]  C. M. Kropf and B. V. Fine, Nonsecular resonances for the coupling between nuclear spins in solids, Phys. Rev. B 86, 094401 (2012) (eprint arXiv:1108.3997 )

[27] B. V. Fine, T. A. Elsayed,  E. G. Sorte and B. Saam, Asymptotic and intermediate long-time behavior of nuclear free induction decays in polycrystalline solids and powders, Phys. Rev. B 86, 054439 (2012) (eprint arXiv:1201.1793)

[26]  A. S. de Wijn, B. Hess and B. V. Fine, Largest Lyapunov exponents for the lattices of interacting classical spins,  Phys. Rev. Lett. 109, 034101 (2012) (eprint arXiv:1205.2901)

[25]  E. G. Sorte, B. V. Fine and B. Saam, Phase relationship between the long-time beats of free induction decays and spin echoes in solids, Phys. Rev. B 85, 174425 (2012)  (eprint arXiv:1102.0527)

[24]  W. Hahn and B. V. Fine, Non-Entangling Channels for Multiple Collisions of Quantum Wave Packets, Phys. Rev. A 85, 032713  (2012)    (eprint arXiv:1104.5421  )

[23]  K. Ji and B. V. Fine, Non-thermal statistics in isolated quantum spin clusters after a series of perturbations, Phys. Rev. Lett. 107, 050401 (2011)  (eprint arXiv:1102.3651 )

[22]  F. Hantschel and B. V. Fine, Monte Carlo sampling of energy-constrained quantum superpositions in high-dimensional Hilbert spaces, Eur. Phys. J. D 63, 73 (2011) (eprint arXiv:1102.0531 )

[21]  E. G. Sorte,  B. V. Fine and B. Saam, Long-time behavior of nuclear spin decays in various lattices, Phys. Rev. B 83, 064302 (2011) (eprint arXiv:1010.6044)

[20]  B. V.  Fine,  Implications of magnetic vortex lattice scenario for 1/8-doped lanthanum cuprates, J. Supercond. Nov. Magn. 24, 1207 (2011) (eprint arXiv:0810.1889)

[19] T. Egami, B.V. Fine, D. Parshall, A. Subedi and D. J. Singh, Spin-Phonon Coupling and Superconductivity in Fe Pnictides, Adv. Cond. Mat. Phys. 2010, 164916 (2010) (eprint  arXiv:0907.2734)

[18] T. Egami, B.V. Fine, D.J. Singh, D. Parshall, C. de la Cruz and P. Dai, Spin–lattice coupling in iron-pnictide superconductors, Physica C 470, S294 (2010) (eprint arXiv:0908:4361 )

[17]  B. V. Fine,  Typical state of an isolated quantum system with fixed energy and unrestricted participation of eigenstates, Phys. Rev. E 80, 051130 (2009), (eprint arXiv:0903:0626 )

*[16] S. W. Morgan, B. V. Fine, and B. Saam,  Universal Long-Time Behavior of Nuclear Spin Decays in a Solid,  Phys. Rev. Lett. 101, 067601 (2008),  (eprint arXiv:0805.1751)

[15]  B. Fine and T. Egami, Intermediate spin-charge order in the cuprates, Journal of Physics Conference Series 108, 012005 (2008)

[14]  B. V. Fine and T. Egami, Phase separation in the vicinity of quantum-critical doping concentration: Implications for high-temperature superconductors, Phys. Rev. B 77, 014519 (2008) (eprint arXive:0707.3994 )

[13]  B. V. Fine, Magnetic vortices instead of stripes: another interpretation of magnetic neutron scattering in lanthanum cuprates, Phys. Rev. B 75, 060504 (2007) (eprint cond-mat/0610748)

[12]  B. V. Fine,  Interpretation of low-temperature nuclear quadrupole resonance spectra in La(1.875)Ba(0.125)CuO(4) in terms of two-dimensional spin superstructure, Phys. Rev. B 75, 014205 (2007), (e-print  cond-mat/0606300)

[11]  B.V. Fine, Long-time behavior of spin echo, Phys. Rev. Lett. 94, 247601 (2005) (e-print cond-mat/0411345)

[10]  B. V. Fine, Temperature dependence of the superconducting gap in high-Tc cuprates,
Phys. Rev. Lett. 94, 157005 (2005) (e-print cond-mat/0408211)

*[9]  B. V. Fine, F. Mintert and A. Buchleitner, Equilibrium entanglement vanishes at finite temperature, Phys. Rev. B 71, 153105 (2005),  (e-print cond-mat/0505739 ) 

[8]  B. V. Fine,  J. P. R. Bakker and J. I. Dijkhuis,  Long-range  fluctuations of random potential landscape as a mechanism of 1/f noise in hydrogenated  amorphous silicon , Fluctuations and Noise Letters 5,  L443-L456 (2005), preprint

[7]  B. V. Fine, Long-Time Relaxation on Spin Lattice as a Manifestation of Chaotic Dynamics ,  Int. J. Mod. Phys. B 18, 1119 (2004), (e-print cond-mat/9911230)

[6]  B. V. Fine, Hypothesis of two-dimensional stripe arrangement and its implications for the superconductivity in high-Tc cuprates,  Phys. Rev. B 70, 224508 (2004),  (e-print cond-mat/0308428 )

[5]  J. P. R. Bakker,  P. J. S. van Capel, B. V. Fine, and J. I. Dijkhuis, New experimental evidence for the role of long-range potential fluctuations in the mechanism of 1/f noise in a-Si:H,  J. Non-Cryst. Solids 338-340, 310 (2004),  (e-print cond-mat/0310468 )

[4]  B. V. Fine,  J. P. R. Bakker and J. I. Dijkhuis,  Long-range potential fluctuations and 1/f noise in hydrogenated  amorphous silicon, Phys. Rev.  B 68, 125207 (2003) (e-print cond-mat/0210680 )

[3]  B. V. Fine, Universal Long-Time Relaxation on the Lattice of Classical Spins: Markovian Behavior on non-Markovian Timescales, J. Stat. Phys.  112, 319 (2003) (e-print cond-mat/9911229)

[2]  J. P. R. Bakker,  P. J. S. van Capel, B. V. Fine, and J. I. Dijkhuis, Generaration-Recombination noise in a-Si:H Studied by Device Simulations, MRS Proceedings 715, A2.6, (2002),

[1] B. V. Fine, NMR Spin-Spin Relaxation as Kinetics in Spin Phase Space , Phys.Rev.Lett. 79, 4673 (1997) (e-print cond-mat/9707249)

Not refereed/Preprints:

[58] W. Hahn and B. V. Fine, Attraction Induced by Mutual Quantum Measurements of Velocity, eprint arXiv:1903.09065 (2019)

[57] B. V. Fine,  Superconductivity in the background of two-dimensional stripe superstructure,   in "New Challenges in Superconductivity: Experimental Advances and Emerging Theories", edited by J. Ashkenazi, M.V. Eremin, J. L. Cohn, I. Eremin, D. Manske, D. Pavuna, and F. Zuo (Kluwer Academic Publishers), pp. 159-164 (2004), (e-print  cond-mat/0404488)

[56] B. V. Fine, Theory of high-temperature spin dynamics, Ph. D. thesis, University of Illinois at Urbana-Champaign, (2000),  

Oleg Lychkovskiy

Deputy Head of the Laboratory, 
Leading Scientist, Ph.D. 

2000-2005, B.S. in Applied Physics and Mathematics, with honors, Moscow Institute of Physics and Technology
Supervisor: Lev Okun

2005-2006, M.S. in Applied Physics and Mathematics, with honors, Moscow Institute of Physics and Technology
Supervisor: Lev Okun

2006-2009,  Ph.D. in Physics and Mathematics, Institute for Theoretical and Experimental Physics. Thesis: Phenomenology of astrophysical neutrinos and hypothetical mirror particles (in Russian) 
Supervisor: Lev Okun
Professional experience
2018 – present Senior Research Scientist, Skoltech
2017    Research Scientist, Skoltech
2016 – present Senior Researcher, Steklov Mathematical Institute
2015 – 2016     Project Leader (project – “Development of algorithms for quantum key processing”), DEPHAN LLC.
2014 – 2017     Postdoctoral Fellow, Russian Quantum Center, Many-body Theory group.
2012 – 2014     Senior Research Associate, Lancaster University, Physics Department.
2009 – 2012     Researcher, Institute for Theoretical and Experimental Physics, Theory Department.



[34] O. Gamayun, O. Lychkovskiy, M. Zvonarev. Zero temperature momentum distribution of an impurity in one-dimensional Fermi and Tonks-Girardeau gases // SciPost Phys. 8, 053 (2020).

[33] O. Gamayun, O. Lychkovskiy, J.-S. Caux. Fredholm determinants, full counting statistics and Loschmidt echo for domain wall profiles in one-dimensional free fermionic chains // SciPost Phys. 8, 036 (2020).

[32] N. Il’in, O. Lychkovskiy. Quantum speed limits for adiabatic evolution, Loschmidt echo and beyond // accepted and published online in Int. J. Theor. Phys. (2020).

[31] O. Lychkovskiy. A remark on the notion of independence of quantum integrals of motion in the thermodynamic limit //J. Stat. Phys. 178, 1028 (2020).

[30] E. Shpagina, F. Uskov, N. Il’in, O. Lychkovskiy. Merits of using density matrices instead of wave functions in the stationary Schrödinger equation for systems with symmetries // J. Phys. A: Math. Theor. 53, 075301 (2020).

[29] F. Uskov, O. Lychkovskiy. A variational lower bound on the ground state of a many-body system and the squaring parametrization of density matrices // J. Phys.: Conf. Ser. 1163, 012057 (2019).

[28] O. Gamayun, O. Lychkovskiy, E. Burovski, M. Malcomson, V. Cheianov, M. Zvonarev. Impact of the injection protocol on an impurity’s stationary state // Phys. Rev. Lett. 120, 220605 (2018).

[27] V. Vyborova, O. Lychkovskiy, A. Rubtsov. Droplet formation in a one-dimensional system of attractive spinless fermions // Phys. Rev. B 98, 235407 (2018).

[26] O. Lychkovskiy, B. Fine. Spin excitation spectrum of high-temperature cuprate superconductors fr om finite cluster simulations // J. Phys.: Condens. Matter 30, 405801 (2018).

[25] O. Lychkovskiy, O. Gamayun, V. Cheianov. Necessary and sufficient condition for quantum adiabaticity in a driven one-dimensional impurity-fluid system // Phys. Rev. B 98, 024307 (2018).

[24] N. Il’in, E. Shpagina, F. Uskov, O. Lychkovskiy. Squaring parametrization of constrained and unconstrained sets of quantum states // J. Phys. A: Math. Theor. 51, 085301 (2018).

[23] O. Lychkovskiy A necessary condition for quantum adiabaticity applied to the adiabatic Grover search // Journal of Russian Laser Research 39, 552 (2018).

[22] O. Lychkovskiy, O. Gamayun, V. Cheianov. Quantum Many-Body Adiabaticity, Topological Thouless Pump and Driven Impurity in a One-Dimensional Quantum Fluid // AIP Conf. Proc. 1936, 020024 (2018).

[21] O. Lychkovskiy, O. Gamayun, V. Cheianov. Time scale for adiabaticity breakdown in driven many-body systems and orthogonality catastrophe // Phys. Rev. Lett. 119, 200401 (2017).

[20] O. Lychkovskiy. Large quantum superpositions of a nanoparticle immersed in superfluid helium // Phys. Rev. B 93, 214517 (2016).

[19] O. Lychkovskiy. Perpetual motion and driven dynamics of a mobile impurity in a quantum fluid // Phys. Rev. A 91, 040101 (Rapid Communications) (2015).

[18] O. Gamayun, O. Lychkovskiy, and V. Cheianov. Reply to ‘Comment on ’Kinetic theory for a mobile impurity in a degenerate Tonks-Girardeau gas’’ // Phys. Rev. E 92, 016102 (2015).

[17] O. Gamayun, O. Lychkovskiy, and V. Cheianov. Kinetic theory for a mobile impurity in a degenerate Tonks-Girardeau gas // Phys. Rev. E 90, 032132 (2014).

[16] E. Burovski, V. Cheianov, O. Gamayun, and O. Lychkovskiy. Momentum relaxation of a mobile impurity in a one-dimensional quantum gas // Phys. Rev. A 89, 041601 (Rapid Communications) (2014).

[15] O. Lychkovskiy. Perpetual motion of a mobile impurity in a one-dimensional quantum gas // Phys. Rev. A 89, 033619 (2014).

[14] E. Safonov and O. Lychkovskiy. Spin dynamics in finite cyclic XY model // Phys. Rev. A 87, 042105 (2013).

[13] O. Lychkovskiy. Dependence of decoherence-assisted classicality on the way a system is partitioned into subsystems // Phys. Rev. A 87, 022112 (2013).

[12] B. Leggio, O. Lychkovskiy and A. Messina. On the merit of a Central Lim it Theorem-based approximation in statistical physics // J. Stat. Phys 146, 1274 (2012).

[11] O. Lychkovskiy and M. Vysotsky. μ ! e decay versus μ ! eee bound and lepton flavor violating processes in supernova // JETP 114, 382 (2012).

[10] O. Lychkovskiy. Entanglement and Relaxation in Exactly Solvable Models // Optics and Spectroscopy 111, 713 (2011).

[9] O. Lychkovskiy. Entanglement, decoherence and thermal relaxation in exactly solvable models // J. Phys. Conf. Ser. 306, 012028 (2011).

[8] O. Lychkovskiy. Necessary condition for the thermalization of a quantum system coupled to a quantum bath // Phys. Rev. E 82, 011123 (2010).

[7] O. Lychkovskiy, S. Blinnikov and M. Vysotsky. TeV-scale bileptons, see-saw type II and lepton flavor violation in core-collapse supernova // Eur. Phys. J. C 67, 213(2010).

[6] O. Lychkovskiy and S. Blinnikov. Spin flip of neutrinos with magnetic moment in core-collapse supernova // Phys. of Atom. Nucl., 73, 614 (2010).

[5] O. Lychkovskiy. Neutrino oscillations: Deriving the plane-wave approximation in the wave-packet approach // Phys. of Atom. Nucl. 72, 1557 (2009).

[4] O. Lychkovskiy. Purity sieve for models with factorizable interactions // J. Phys. Conf. Ser. 174,012030 (2009).

[3] B. Kerbikov, O. Lychkovskiy. Neutron-Mirror-Neutron Oscillations in a Trap // Phys. Rev. C 77,065504 (2008).

[2] A.D. Dolgov, O.V. Lychkovskiy, A.A. Mamonov, L.B. Okun and M.G. Schepkin. Neutrino wave function and oscillation suppression // Eur. Phys. J. C 44, 431 (2005).

[1] A.D. Dolgov, O.V. Lychkovskiy, A.A. Mamonov, L.B. Okun, M.V. Rotaev, M.G. Schepkin. Oscillations of neutrinos produced and detected in crystals // Nucl. Phys. B 729, 79 (2005).

Not refereed/Preprints:

[39] O. Gamayun, A. Slobodeniuk, J.-S. Caux, O. Lychkovskiy Nonequilibrium phase transition in transport through a driven quantum point contact //  arXiv 2006.02400 (2020)

[38] O. Lychkovskiy Quantum speed limit for a thermal state after a quench // arXiv 2005.06416 (2020)

[37] N. Il’in, A. Aristova, O. Lychkovskiy Adiabatic theorem for closed quantum systems initialized at finite temperature // arXiv 2002.02947 (2020)

[36] O. Lychkovskiy. Non-diagonal problem Hamiltonian for adiabatic quantum computation // arXiv1811.09453 (2018)

[35] O. Lychkovskiy. Decoherence at the level of eigenstates // arXiv 1712.04384 (2017)
Academic Interests
Quantum many-body dynamics, quantum adiabatic approximation, quantum impurity models, decoherence and quantum-to-classical transition, integrable models.

Igor Ermakov

Junior scientist

2010 – 2014, Ural Federal University, Department of Physics, Division of Theoretical Physics.
Bachelor Degree in Physic

2015 – 2017, Saint-Petersburg State University, Department of Physics,
Division of Quantum Mechanics.
Master Degree in Physics

Professional experience

[5] Dodel, Amaury, et al. "Cooper pair polaritons in cold fermionic atoms within a cavity." Physical Review Research 2.1 (2020): 013184.
DOI: 10.1103/PhysRevResearch.2.013184

[4] Ermakov, Igor, and Tim Byrnes. "Time dynamics of Bethe ansatz solvable models." Physical Review B 101.5 (2020): 054305.

[3] Igor Ermakov, Tim Byrnes, and Nikolay Bogoliubov, High-accuracy energy formulas for the attractive twosite  Bose-Hubbard model, Phys. Rev. A 97, 023626

[2] Chandrashekar Radhakrishnan, Igor Ermakov, and Tim Byrnes, Quantum coherence of planar spin models with Dzyaloshinsky-Moriya interaction, Phys. Rev. A 96, 012341

[1] N. M. Bogoliubov, I. Ermakov and A. Rybin Time evolution of the atomic inversion for the generalized Tavis–Cummings model—QIM approach, Journal of Physics A: Mathematical and Theoretical 50.46 (2017): 464003

Andrei Tarkhov

Scientist, Ph.D.

2010 - 2016, BSc and MSc in Physics with honours,
Lomonosov Moscow State University,
Physics Department,
Supervisor: V. I. Emel’yanov

2016 - 2020, PhD in Physics,
Skolkovo Institute of Science and Technology
Supervisor: Boris Fine
Professional experience
Publications and preprints:

[10] A.V. Shindyapina, A. A. Zenin, A. E. Tarkhov, D. Santesmasses, P. O.
Fedichev, V. N. Gladyshev, Germline burden of rare damaging variants negatively affects human healthspan and lifespan, Elife, 9, e53449 (2020).

[9] K. Avchaciov, M. P. Antoch, E. L. Andrianova, A. E. Tarkhov, L. I. Menshikov,
A. V. Gudkov, P. O. Fedichev, Identification of a blood test-based biomarker of aging through deep learning of aging trajectories in large phenotypic datasets of mice (2020) bioRxiv 2020.01.23.917286.

[8] A. E. Tarkhov, R. Alla, S. Ayyadevara, M. Pyatnitskiy, L. I. Menshikov, R. J.
Shmookler Reis, P. O. Fedichev, Universal transcriptomic signature of age reveals temporal scaling of Caenorhabditis elegans aging trajectories, Scientific Reports, 9 (2019) bioRxiv 207647.

[7] P. E. Dolgirev, M. S. Kalenkov, A. E. Tarkhov, A. D. Zaikin, Phase coherent electron transport in asymmetric cross-like Andreev interferometers Phys. Rev. B 100,
054511 (2019) e-print arXiv:1906.07305.

[6] T. V. Pyrkov, K. Avchaciov, A. E. Tarkhov, L. I. Menshikov, A. V. Gudkov, P.
O. Fedichev, Longitudinal analysis of blood markers reveals progressive loss of resilience and predicts ultimate human lifespan limit (2019) bioRxiv: 618876

[5]  A. E. Tarkhov, B. V. Fine, Estimating ergodization time of a chaotic many-particle system from a time reversal of equilibrium noise, New J. Phys. 20 123021 (2018) e-print arXiv:1804.09732.

[4] A. E. Tarkhov, S. Wimberger and B. V. Fine, Extracting Lyapunov exponents from the echo dynamics of Bose-Einstein condensates on a lattice, Phys. Rev. A 96, 023624 (2017) e-print arXiv:1705.08176.

[3] A. E. Tarkhov, L. I. Menshikov, P. O. Fedichev, Strehler-Mildvan correlation is a degenerate manifold of Gompertz fit, J. Theor. Biol. 416, 180–189

[2] V.I. Emel’yanov, A.E. Tarkhov, Two-stage mechanism of formation of ordered surface nanostructures under atomic deposition, Computational Nanotechnology, 4, 37 (2015)

[1] A.Y. Vasiliev, A.E. Tarkhov, L.I. Menshikov, P.O. Fedichev, U.R. Fischer,
New J. Phys, 16, 053011 (2014).

Egor Skorokhodov

Junior scientist

2014–2018, Bachelor of Sceince, Moscow Institute of Physics and Technology (State University), Undergraduate student, Department of Problems of Physics and Energetics, Dolgoprudny.
GPA: 7.76/10.

2018–2020, Master of Science, Skolkovo Institute of Science and Technology, Track of Photonics and Quantum Materials, Skolkovo.
GPA: 4.9/5

2018–2020, Master of Science, Moscow Institute of Physics and Technology, Physics of Microwaves and Nanomaterials, Dolgoprudny.
GPA: 4.85/5
Professional experience
I have finished my Master degree at MIPT and Skoltech in 2020. Currently, I am the first year PhD student in MIPT working under the supervision of Boris Fine. The main field of activity is devoted to the investigation of spin dynamics with the application to NV-centers in diamond.

2017–2018, Senior laborant, A. M. Prokhorov General Physics Institute of Russian Academy of Sciences, Laboratory of Surface Physics, Moscow.
Work responsibilities:
  1.  DFT calculations
  2.  Molecular modeling and visualization
  3.  Learning of NV-centres in diamond

2018–present, Research Intern, Skolkovo Institute of Science and Technology, Skolkovo.
Work responsibilities:
  1. Simulations of Spin-dynamics
  2. Analytical calculations

Kirill Pavlenko

Junior scientist

2011-2015, Moscow Institute of Physics and Technology, Moscow
BSc in Theoretical Thesis: Stochastic inflation
Physics Advisor: Emil T. Akhmedov

2015-2017, Moscow Institute of Physics and Technology, Moscow
MSc in Theoretical Thesis: Infrared dynamics of scalar fields in expanding de Sitter space
Physics Advisor: Emil T. Akhmedov

2017 - present, Skoltech
PhD student in Thesis: Quantum KdV charges, 2d conformal field theory and eigenstate thermalization
Advisor: Anatoly Ya. Dymarsky

Professional experience

[5] A. Dymarsky, K. Pavlenko and D. Solovyev, ”Zero modes of local
operators in 2d CFT on a cylinder”, arXiv:1912.13444, submitted to
JHEP (2020)

[4] A. Dymarsky and K. Pavlenko, ”Generalized Eigenstate
Thermalization Hypothesis in 2D Conformal Field Theories”, Physical
Review Letters 123 (11), 111602 (2019)

[3] A. Dymarsky and K. Pavlenko, ”Exact generalized partition function of
2D CFTs at large central charge”, J. High Energ. Phys. (2019) 2019: 77

[2] A. Dymarsky and K. Pavlenko, ”Generalized Gibbs Ensemble of 2d
CFTs at large central charge in the thermodynamic limit”, J. High
Energ. Phys. (2019) 2019: 98 

[1] E.T. Akhmedov, U. Moschella, K.E. Pavlenko, and F.K. Popov,
”Infrared dynamics of massive scalars from the complementary series
in de Sitter space”. Phys. Rev. D 96, 025002 (2017)
Academic Interests
Quantum many-body systems, tensor networks, quantum complexity, quantum machine learning, out of eqillibrium quantum systems, quantum chaoticity, strongly coupled quantum field theories, string theory, conformal field theories, holographic duality

Roman Schutski

Leading Scientist, Ph.D

2007-2012 Bachelors Degree in Computational Chemistry, with honors
MOSCOW STATE UNIVERSITY Department of Chemistry, Moscow, Russia
Thesis title: "Quantum-mechanical simulation of electronic-vibrational spectrum of
benzaldehyde molecule" 
Supervisors: Dr. Pupyshev V. I, Dr. Bataev V.A.

2012-2018 PhD
Rice University Scuseria's research group, Houston, Texas
Thesis title: "Tensor structured Coupled Cluster theories"
Supervisor: G.E. Scuseria.
Professional experience
Researcher with strong background in numerical simulations, optimization and statistical data analysis.
Proficient with software development of computationally intensive algorithms in various modern languages.
Experienced in presenting to technical and non-technical audiences.


[9] 2020 Schutski, Roman, Khakhulin, Taras, Ivan Oseledets, Dmitry Maslov “Simple heuristics for efficient parallel tensor network contraction and quantum circuit simulation”

[8] 2019 Khakhulin, Taras, Schutski, Roman, Ivan Oseledets "Graph Convolutional Policy for Solving Tree Decomposition via Reinforcement Learning Heuristics" submitted to AISTATS’20.

[7] 2019 Schutski, Roman, Lykov, Danil, Oseledets Ivan. "An adaptive algorithm for quantum circuit simulation" submitted to Phys. Rev. B

[6] 2018 Tichai, Alexander, Schutski R.S. "Tensor-decomposition techniques for ab initio nuclear structure calculations. From chiral nuclear potentials to ground-state energies." Phys. Rev. C 99, 034320

[5] 2018 Krasnoshchekov, Sergey V., Schutski R.S. "Comparing the accuracy of perturbative and variational calculations for predicting fundamental vibrational frequencies of dihalomethanes." J.Chem. Phys, 148.8 (2018): 084102.

[4] 2017 Schutski R.S., Zhao J., Henderson T. M., Scuseria G. E. “Tensor Structured Coupled Cluster Theory”,

[3] 2015 Schutski R.S., Jiménez-Hoyos C.A., Scuseria G.E. “Analytic energy gradient for the projected Hartree–Fock method”, J. Chem. Phys., 140(20), 204101

[2] 2014 Rodríguez-Guzmán R., Jiménez-Hoyos C.A., Schutski R.S, Scuseria G.E. “Multireference symmetry-projected variational approaches for ground and excited states of the one-dimensional Hubbard model”, Phys. Rev. B, 87(23), 235129

[1] 2012 Schutski R.S., Bataev V.A., Godunov I.A., “Internal rotation of benzaldehyde in the ground and excited electronic states: strong coupling with non-planar carbon distortion” Book of abstracts, 14 European Symposium on Gas Phase Electron Diffraction (2012)

Anastasia Aristova

Junior scientist

Aug 2009 - July 2013, B.S. (with honors) in Applied Mathematics and Physics
Moscow Institute of Physics and Technology
Thesis: \Twistor formalism and Berry phase in momentum space"
Advisor: Prof. A.S. Gorsky
GPA: 3.95/4

Aug 2013 - July 2015, M.S. in Applied Mathematics and Physics
Moscow Institute of Physics and Technology
Thesis: \Vortical susceptibility of nite-density QCD matter"
Advisor: Prof. A.S. Gorsky
GPA: 3.7/4

Oct 2016 - Present Ph.D., Student in Condensed Matter Physics
Skolkovo Institute of Science and Technology
Advisor: Prof. B.V. Fine
Professional experience

[3] N. Il'in, A. Aristova, O. Lychkovskiy, Adiabatic theorem for closed quantum systems initialized at nite temperature,
arXiv 2002.02947

[2] A. Aristova, V. Bhartiya, B. Fine, Modeling superconductivity in the background of a spin-vortex checkerboard, Phys.
Rev. B (2019), 100, 17.

[1] A. Aristova, D. Frenklakh, A. Gorsky, D. Kharzeev, Vortical susceptibility of nite-density QCD matter, J. High Energ.
Phys. (2016), 2016, 10, 29.
Academic Interests
High-temperature superconductivity, strongly correlated electronic systems, quantum thermodynamics