Размер шрифта A A A Обычная версия сайта
    E-mail address:

    Valentyn S. Volkov

    Valentyn S. Volkov

    ORCID: http://orcid.org/0000-0003-2637-1371
    ResearcherID: M-5489-2013
    Scopus AuthorID: 7402983917
    Researchgate
    Google Scholar

    The Head of the Laboratory of Nanooptics and Plasmonics, Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology and Associate Professor, SDU Nano Optics, The Mads Clausen Institute, University of Southern Denmark

    Born: 26 January 1977, Ukraine.

    Tel: +45 6550 7347; Fax: +45 6550 7384; Cell: +45 6082 7969; E-mail: vsv@mci.sdu.dk

    Education:

    2003 - Ph.D. (Mathematics and Physics) Aalborg University, Faculty of Engineering and Science, Institute of Physics and   Nanotechnology, Denmark.

    2000 - M.Sc. (Radio-physics and Optics). Lomonosov Moscow State University, Faculty of Physics, Russian Federation.


    Research Interests: 


    Professional Activities: 

    Teaching experience:
    7 years of experience teaching engineers and physicists at university level including specialized PhD courses. Responsible for development of complete study plans in Materials Physics and in Sensor Technology. Responsible supervisor for 2 Ph.D. students, 7 B.Sc/M.Sc. students.

    Research projects:
    2000 – 2003, EU, Photonic integrated circuits using photonic crystal circuits (PICCO).
    2003 – 2006, MVTU, Center for micro-optical structures (CEMOST).
    2004 – 2008, NoE, PLASMO-NANO-DEVICES FP6-2002-IST-1-507879.
    2004 – 2008, STVF, Planar intergrated PBG elements (PIPE).
    2007 – 2010, FTP, Channel plasmon polariton based components for nanophotonics.
    2010 – 2013, RUS, Near-field optical microscopy of plasmonic nanostructures, #14.740.11.0888.
    2013 – 2013, TEK FUND, Atomic force microscopy: connecting university education to the nanoworld.
    2015 – 2016, UF DK, Active plasmonics for nanophotonic applications.
    2014 – 2019, 5TOP100 RUS, Nanooptics and plasmonics.
    2018 – 2020, RSF, Integrated optical nanosensors based on two-dimensional nanomaterials.

    Press releases:
    Team delivers world's first biosensor chips based on copper and graphene oxide, April 12, 2018 Phys.org
    MIPT delivers world’s first biosensor chips based on copper & graphene oxide, April 11, 2018 AZO Sensors
    Precise evaluation of optical consonants of gold thin films, October 19, 2017 AZO Nano
    Scientists revisit optical constants of ultrathin gold films, October 17, 2017 Phys.org
    Copper components successful in nanophotonics, April 4, 2016 Novus Light Technologies Today
    Physicists promise a copper revolution in nanophotonics, February 25, 2016 Phys.org
    Graphene biosensors could lead to the development of new drugs, Nov 15, 2015 HEADLINES & GLOBAL NEWS
    New graphene oxide biosensors may accelerate research of HIV and cancer drugs, September 23, 2015 Medical News Today

    Publication Summary:
    Scopus: 64 search results, sum of the times cited 3844, highest citation 1735, 10 papers with citations > 50, h‐index 23

    Valentyn Volkov


    Major Publications:


    1. Y. V. Stebunov, D. I. Yakubovsky, D. Y. Fedyanin, A. V. Arsenin, and V. S. Volkov, "Superior Sensitivity of Copper-Based Plasmonic Biosensors," Langmuir 34(15), 4681–4687 (2018).

    2. D. I. Yakubovsky, A. V. Arsenin, Y. V. Stebunov, D. Y. Fedyanin, and V. S. Volkov, "Optical constants and structural properties of thin gold films," Opt. Express 25(21), 25574–25587 (2017).

    3. D. Y. Fedyanin, D. I. Yakubovsky, R. V. Kirtaev, and V. S. Volkov, "Ultralow-Loss CMOS Copper Plasmonic Waveguides," Nano Lett. 16(1), 362–366 (2016).

    4. V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, "Boosting Local Field Enhancement by on-Chip Nanofocusing and Impedance-Matched Plasmonic Antennas," Nano Lett. 15(12), 8148–8154 (2015).

    5. Y. V. Stebunov, O. A. Aftenieva, A. V. Arsenin, and V. S. Volkov, "Highly Sensitive and Selective Sensor Chips with Graphene-Oxide Linking Layer," ACS Appl. Mater. Interfaces 7(39), 21727–21734 (2015).

    6. A. Andryieuski, V. A. Zenin, R. Malureanu, V. S. Volkov, S. I. Bozhevolnyi, and A. V. Lavrinenko, "Direct characterization of plasmonic slot waveguides and nanocouplers," Nano Lett. 14(7), 3925–3929 (2014).

    7. V. A. Zenin, A. Pors, Z. Han, R. L. Eriksen, V. S. Volkov, and S. I. Bozhevolnyi, "Nanofocusing in circular sector-like nanoantennas," Opt. Express 22(9), 10341–10350 (2014).

    8. A. Kumar, J. Gosciniak, V. S. Volkov, S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, T. Tekin, M. Waldow, D. Apostolopoulos, H. Avramopoulos, N. Pleros, and S. I. Bozhevolnyi, "Dielectric-loaded plasmonic waveguide components: Going practical," Laser Photonics Rev. 7(6), 938–951 (2013).

    9. V. A. Zenin, Z. Han, V. S. Volkov, K. Leosson, I. P. Radko, and S. I. Bozhevolnyi, "Directional coupling in long-range dielectric-loaded plasmonic waveguides," Opt. Express 21(7), 8799–8807 (2013).

    10. V. A. Zenin, V. S. Volkov, Z. Han, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, "Directional coupling in channel plasmon-polariton waveguides," Opt. Express 20(6), 6124–6134 (2012).

    11. V. A. Zenin, V. S. Volkov, Z. Han, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, "Dispersion of strongly confined channel plasmon polariton modes," J. Opt. Soc. Am. B 28(7), 1596 (2011).

    12. V. S. Volkov, Z. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, "Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths," Opt. Lett. 36(21), 4278–4280 (2011).

    13. J. Gosciniak, V. S. Volkov, S. I. Bozhevolnyi, L. Markey, S. Massenot, and A. Dereux, "Fiber-coupled dielectric-loaded plasmonic waveguides," Opt. Express 18(5), 5314–5319 (2010).

    14. J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, "Thermo-optic control of dielectric-loaded plasmonic waveguide components," Opt. Express 18(2), 1207–1216 (2010).

    15. V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, "Nanofocusing with channel plasmon polaritons," Nano Lett. 9(3), 1278–1282 (2009).

    16. V. S. Volkov, J. Gosciniak, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, "Plasmonic candle: towards efficient nanofocusing with channel plasmon polaritons," New J. Phys. 11(11), 113043 (2009).

    17. R. B. Nielsen, I. Fernandez-Cuesta, A. Boltasseva, V. S. Volkov, S. I. Bozhevolnyi, A. Klukowska, and A. Kristensen, "Channel plasmon polariton propagation in nanoimprinted V-groove waveguides," Opt. Lett. 33(23), 2800–2802 (2008).

    18. A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, "Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths," Opt. Express 16(8), 5252–5260 (2008).

    19. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. -Y. Laluet, and T. W. Ebbesen, "Channelling surface plasmons," Appl. Phys. A: Mater. Sci. Process. 89(2), 225–231 (2007).

    20. V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, "Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides," Nano Lett. 7(8), 2341–2345 (2007).

    21. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Wavelength selective nanophotonic components utilizing channel plasmon polaritons," Nano Lett. 7(4), 880–884 (2007).

    22. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, "Bend loss for channel plasmon polaritons," Appl. Phys. Lett. 89(14), 143108 (2006).

    23. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440(7083), 508–511 (2006).

    24. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, "Compact gradual bends for channel plasmon polaritons," Opt. Express 14(10), 4494–4503 (2006).

    25. V. S. Volkov, S. I. Bozhevolnyi, P. I. Borel, L. H. Frandsen, and M. Kristensen, "Near-field probing of photonic crystal directional couplers," Laser Phys. Lett. 3(6), 288–292 (2006).

    26. N. Gregersen, B. Tromborg, V. S. Volkov, S. I. Bozhevolnyi, and J. Holm, "Topography characterization of a deep grating using near-field imaging," Appl. Opt. 45(1), 117–121 (2006).

    27. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95(4), 046802 (2005).

    28. V. S. Volkov, S. I. Bozhevolnyi, P. I. Borel, L. H. Frandsen, and M. Kristensen, "Near-field characterization of low-loss photonic crystal waveguides," Phys. Rev. B: Condens. Matter Mater. Phys. 72(3), (2005).

    29. V. S. Volkov, S. I. Bozhevolnyi, P. I. Borel, L. H. Frandsen, and M. Kristensen, "Near-field characterization of photonic crystal Y-splitters," Phys. Status Solidi C 2(12), 4087–4092 (2005).

    30. I. P. Radko, V. S. Volkov, S. I. Bozhevolnyi, J. Henningsen, and J. Pedersen, "Near-field mapping of surface refractive-index distributions," Laser Phys. Lett. 2(9), 440–444 (2005).

    31. P. S. Carney, P. Scott Carney, R. A. Frazin, S. I. Bozhevolnyi, V. S. Volkov, A. Boltasseva, and J. C. Schotland, "Computational Lens for the Near Field," Phys. Rev. Lett. 92(16), (2004).

    32. S. I. Bozhevolnyi and V. S. Volkov, "Near-field characterization of planar photonic-crystal-waveguide structures," Philos. Trans. A Math. Phys. Eng. Sci. 362(1817), 757–769 (2004).

    33. V. S. Volkov, S. I. Bozhevolnyi, and D. Taillaert, "Near-field imaging of light diffraction out of slab waveguides," Laser Phys. Lett. 1(6), 311–316 (2004).

    34. V. S. Volkov, S. I. Bozhevolnyi, V. G. Bordo, and H.-G. Rubahn, "Near-field imaging of organic nanofibres," J. Microsc. 215(Pt 3), 241–244 (2004).

    35. V. S. Volkov, S. I. Bozhevolnyi, K. Leosson, and A. Boltasseva, "Experimental studies of surface plasmon polariton band gap effect," J. Microsc. 210(Pt 3), 324–329 (2003).

    36. S. I. Bozhevolnyi, V. S. Volkov, A. Boltasseva, and K. Leosson, "Local excitation of surface plasmon polaritons in random surface nanostructures," Opt. Commun. 223(1)–(3), 25–29 (2003).

    37. S. I. Bozhevolnyi and V. S. Volkov, "Near-field microscopy of light propagation in photonic crystal waveguides," in Nanotechnology (2003).

    38. S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, "Surface plasmon polariton waveguiding in random surface nanostructures," J. Microsc. 209(Pt 3), 209–213 (2003).

    39. S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Søndergaard, and M. Kristensen, "Direct mapping of light propagation in photonic crystal waveguides," Opt. Commun. 212(1)–(3), 51–55 (2002).

    40. S. I. Bozhevolnyi, V. S. Volkov, and K. Leosson, "Localization and waveguiding of surface plasmon polaritons in random nanostructures," Phys. Rev. Lett. 89(18), 186801 (2002).

    41. S. I. Bozhevolnyi and V. S. Volkov, "Multiple-scattering dipole approach to modeling of surface plasmon polariton band gap structures," Opt. Commun. 198(4)–(6), 241–245 (2001).

    42. S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and J. Erland, "Observation of propagation of surface plasmon polaritons along line defects in a periodically corrugated metal surface," Opt. Lett. 26(10), 734 (2001).

    43. S. I. Bozhevolnyi, V. S. Volkov, and K. Leosson, "Surface plasmon polariton propagation along a 90° bent line defect in a periodically corrugated metal surface," Opt. Commun. 196(1)–(6), 41–45 (2001).



    If you noticed a typo select it and press Ctrl+Enter.

    MIPT in social networks