Одним из главных принципов уникальной «системы Физтеха», заложенной в основу образования в МФТИ, является тщательный отбор одаренных и склонных к творческой работе представителей молодежи. Абитуриентами Физтеха становятся самые талантливые и высокообразованные выпускники школ всей России и десятков стран мира.
МФТИ является одним из ведущих технических вузов России. Институт по праву занимает лидирующее место по качественному приему абитуриентов и квалифицированной подготовке выпускников. Студенты и выпускники МФТИ являются представителями узкого круга лиц, которые, благодаря окружающим их возможностям междисциплинарного научного образования, могут в полной мере реализовать свой потенциал.
Уникальная «Система обучения Физтеха» является одним из лучших подходов к образованию, что доказывает ее существование почти в неизменном виде уже более 60 лет. Получение фундаментального образования в области математики и физики, предварительное знакомство с избранной специализацией наряду с приобретением навыков самостоятельной работы уже на 4м курсе обеспечивают каждого студента объемом знаний и опыта полноценного ученого. Таким образом, к окончанию обучения студенты уже имеют значительные достижения в избранном ими направлении деятельности.
Исследования в МФТИ охватывают широкий круг областей теоретической и экспериментальной физики, энергетики и биомедицины, химии и прикладной математики. Поддержка ряда государственных и частных научных и инвестиционных фондов позволяет нашим ученым каждый день вести разработки на переднем крае науки, чтобы сделать мир более совершенным, удобным и безопасным.
The study of graphs with high girth and high chromatic number had a profound influence on the history of Combinatrics and Graph Theory, and led to the development of sophisticated methods involving tools from topology, number theory, algebra and combinatorics. I will discuss the topic focusing on a recent new explicit construction of graphs (and hypergraphs) of high girth and high chromatic number, in joint work with Kostochka, Reiniger, West and Zhu.
Lecture 2: Signrank and its applications in combinatorics and complexity
The sign-rank of a real matrix A with no 0 entries is the minimum rank of a matrix B so that for all i,j. The study of this notion combines combinatorial, algebraic, geometric and probabilistic techniques with tools from real algebraic geometry, and is related to questions in Communication Complexity, Computational Learning and Asymptotic Enumeration. I will discuss the topic and describe its background, several recent results from joint work with Morn and Yehudayoff, and some intriguing open problems.
Если вы заметили в тексте ошибку, выделите её и нажмите Ctrl+Enter.