Одним из главных принципов уникальной «системы Физтеха», заложенной в основу образования в МФТИ, является тщательный отбор одаренных и склонных к творческой работе представителей молодежи. Абитуриентами Физтеха становятся самые талантливые и высокообразованные выпускники школ всей России и десятков стран мира.

Студенческая жизнь в МФТИ насыщенна и разнообразна. Студенты активно совмещают учебную деятельность с занятиями спортом, участием в культурно-массовых мероприятиях, а также их организации. Администрация института всячески поддерживает инициативу и заботится о благополучии студентов. Так, ведется непрерывная работа по расширению студенческого городка и улучшению быта студентов.

Адрес e-mail:

Оптимальное управление

министерство образования  российской федерации

Государственное образовательное учреждение

высшего профессионального образования

Московский физико-технический институт

(государственный университет)

 

                                                           УТВЕРЖДАЮ

                                                 Проректор по учебной работе

                                               _____________Ю.А.Самарский

                                               «____»_______________2004 г.

 

 

П Р О Г Р А М М А

по курсу: ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ

по направлению 511600

факультет       ФУПМ

кафедра математических основ управления

курс IV

семестр 7, 8

лекции – 50 час.     Экзамен – 8 семестр

семинары – 50 час.     Зачет – 7 семестр

лабораторные занятия – нет  

Самостоятельная работа – 2 часа в неделю

ВСЕГО ЧАСОВ         100

Программу и задание составил: д.ф.-м.н., профессор Жадан В.Г.

Программа обсуждена на заседании кафедры математических основ управления 26 марта 2004 г.

Заведующий кафедрой                       С.А. Гуз

 

1. Основная задача оптимального управления. Принцип максимума Л.С. Понтрягина (принцип минимума). Каноническая форма записи. Принцип максимума для систем, содержащих управляющие параметры.

2. Задачи с подвижным правым концом. Условия трансверсальности. Задачи Лагранжа и Больца. Задачи Майера и Лагранжа с нефиксированным временем окончания процесса. Задача на быстродействие. Задача с подвижным левым концом.

3. Доказательство принципа максимума Л.С. Понтрягина для задачи Майера. Понятие игольчатой вариации. ЛеммаГронуолла–Беллмана. Учет оптимизации по управляющему параметру.

4. Связь принципа максимума с вариационным исчислением. Уравнение Эйлера. Первые интегралы уравнения Эйлера. Условия Веерштрасса, Лежандра и Якоби. Уравнение Якоби. Условия Веерштрасса–Эрдмана.

5. Линейные системы. Принцип максимума для линейных систем. Теорема о конечном числе точек переключений.

6. Множество достижимости для линейных систем. Экстремальное управление и экстремальный принцип.

7. Точечная управляемость для линейных систем. Критерий точечной управляемости. Теорема Калмана о точечной управляемости. Полная управляемость линейных систем. Теорема Калмана о полной управляемости автономных систем.

8. Проблема наблюдаемости. Критерий наблюдаемости для линейной системы. Наблюдение начального состояния. Связь между наблюдаемостью и управляемостью. Критерий полной наблюдаемости стационарной системы.

9. Формализм Лагранжа и его использование для решения задач оптимального управления. Проблема синтеза оптимального управления.

10. Проблема идентификации. Критерий идентифицируемости. Критерий полной идентифицируемости стационарной системы.

11. Системы с разрывными правыми частями. Условие скачка импульсов.

12. Понятие инвариантных систем. Свойства динамических систем. Опорное поле импульсов. Необходимые и достаточные условия инвариантности. Корректирующая функция.

13. Достаточные условия оптимальности. Поле экстремалей. Связь с достаточными условиями Веерштрасса для классической задачи вариационного исчисления.

14. Элементы теории динамического программирования. Необходимые условия оптимальности. Достаточные условия оптимальности. Уравнение Беллмана. Вывод принципа максимума из динамического программирования. Связь с вариационным исчислением.

15. Методы решения краевых задач. Применение метода Ньютона. Перенос граничных условий. Метод прогонки для нелинейных задач.

16. Численные методы, основанные на последовательном анализе вариантов. Метод «киевского веника», метод блуждающей трубки, метод локальных вариаций.

17. Численные методы, основанные на редукции к задачам нелинейного программирования. Вычисление производных по компонентам вектора управлений в случае дискретных процессов. Метод штрафов, метод нагруженного функционала.

18. Дискретный принцип минимума. Вариационные неравенства. Применение метода условного градиента для решения задач оптимального управления. Принцип квазиминимума.

19. Достаточные условия оптимальности В.Ф. Кротова для непрерывных и дискретных процессов. Применение формализма В.Ф. Кротова для решения линейных задач.

20. Особые управления. Определение особых управлений с помощью скобок Пуассона. Условия Келли и Коппа–Мойера.

 

СПИСОК ЛИТЕРАТУРЫ

1. Моисеев Н.Н. Численные методы в теории оптимальных систем. – М.: Наука, 1971.

2. Евтушенко Ю.Г. Методы решения экстремальных задач и их применение в системах оптимизации. – М.: Наука, 1982.

3. Моисеев Н.Н., Иванилов Ю.П., Столярова Е.М. Методы оптимизации. – М.: Наука, 1987.

4. Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе З.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. – М.: Физматгиз, 1961.

5. Васильев Ф.П. Методы решения экстремальных задач. – М.: Наука, 1988.

6. Габасов Р., Кириллова Ф.М. Принцип максимума в теории оптимального управления. – Минск: Наука и техника, 1974.

7. Флеминг У., Ришел Р. Оптимальное управление детерминированными и стохастическими системами. – М.: Мир, 1978.

8. Основы теории оптимального управления /Под редакцией В.Ф. Кротова. – М.: Высшая школа, 1990.

9. Ли Э.Б., Маркус П. Основы теории оптимального управления. М.: Наука, 1972.

10. ГабасовР., Кириллова Ф.М. Особые оптимальные управления. – М.: Наука, 1973.

Задание можно посмотреть здесь

Если вы заметили в тексте ошибку, выделите её и нажмите Ctrl+Enter.

© 2001-2016 Московский физико-технический институт
(государственный университет)

Техподдержка сайта

МФТИ в социальных сетях

soc-vk soc-fb soc-tw soc-li soc-li
Яндекс.Метрика