Одним из главных принципов уникальной «системы Физтеха», заложенной в основу образования в МФТИ, является тщательный отбор одаренных и склонных к творческой работе представителей молодежи. Абитуриентами Физтеха становятся самые талантливые и высокообразованные выпускники школ всей России и десятков стран мира.

Студенческая жизнь в МФТИ насыщенна и разнообразна. Студенты активно совмещают учебную деятельность с занятиями спортом, участием в культурно-массовых мероприятиях, а также их организации. Администрация института всячески поддерживает инициативу и заботится о благополучии студентов. Так, ведется непрерывная работа по расширению студенческого городка и улучшению быта студентов.

Адрес e-mail:

Семинар лаборатории нелинейных процессов в газовых средах МФТИ (FlowModellium Lab)

Семинар 9 октября 2013 г
Время: 16-00
Место: г. Долгопрудный, МФТИ 606КПМ
Тема: О решении задачи Римана для распада произвольного разрыва в случае уравнений Рейнольдса
Докладчик: П.В. Чувахов (ЦАГИ, МФТИ(ГУ), г. Жуковский)

Большая часть современных расчётных кодов, позволяющих моделировать сложные практические течения газа при больших сверхзвуковых скоростях, основана на применении метода конечного объёма. С целью монотонизации используемой разностной схемы расчёт численных потоков на гранях ячеек осуществляется при помощи решения задачи Римана о распаде произвольного разрыва. Задача Римана может быть решена численно в итерационном процессе. Однако такой подход оказывается ресурсоёмким, и вместо него часто применяют приближённые методы, например: HLL, HLLC, Русанова, Роу и т. д.

Метод Роу основан на приближённом решении системы уравнений Эйлера, расщепленной по обобщённым (криволинейным) координатам. Оказывается, матрица Якоби такой системы всегда может быть приведена к диагональному виду A = R ∧ R-1 причём аналитический вид матриц R и R-1 известен из научной литературы. При моделировании турбулентных течений методом RANS с использованием популярных замыканий типа k-w, k-w, q-w и пр. к конвективной части уравнений Навье – Стокса добавляется конвективная часть дополнительных уравнений переноса турбулентных величин, а соответствующие матрицы R и R-1 расширяются и изменяются, причём найти их в литературе оказывается проблематичным.

Доклад посвящён следующим вопросам:

  1. общий подход Роу к решению задачи Римана о распаде произвольного разрыва, который используется в пакете прикладных программ ЦАГИ (HSFlow);
  2. получение аналитической модификации матриц R и R-1 для уравнений Рейнольдса, замкнутых двухпараметрической дифференциальной моделью турбулентности (k-w и q-w);
  3. тестирование полученных (точных) матриц на модельных задачах и сравнение результатов с приближённым подходом, который использовался ранее, —
    • 2D постановка задачи
    • 3D постановка задачи
10.10.2016Семинар HPC
24.12.2014Osypovsky Cup
Если вы заметили в тексте ошибку, выделите её и нажмите Ctrl+Enter.

© 2001-2017 Московский физико-технический институт
(государственный университет)

Техподдержка сайта

МФТИ в социальных сетях

soc-vk soc-fb soc-tw soc-li soc-li soc-yt
Яндекс.Метрика