Одним из главных принципов уникальной «системы Физтеха», заложенной в основу образования в МФТИ, является тщательный отбор одаренных и склонных к творческой работе представителей молодежи. Абитуриентами Физтеха становятся самые талантливые и высокообразованные выпускники школ всей России и десятков стран мира.

Студенческая жизнь в МФТИ насыщенна и разнообразна. Студенты активно совмещают учебную деятельность с занятиями спортом, участием в культурно-массовых мероприятиях, а также их организации. Администрация института всячески поддерживает инициативу и заботится о благополучии студентов. Так, ведется непрерывная работа по расширению студенческого городка и улучшению быта студентов.

Адрес e-mail:

05.13.18 Математическое моделирование, численные методы и комплексы программ

ПРОГРАММА-МИНИМУМ

кандидатского экзамена по специальности

05.13.18 «Математическое моделирование, 
численные м
етоды и комплексы программ»

по физико-математическим и техническим наукам

Введение

В основе настоящей программы лежит материал курсов: функциональный анализ, математическая физика, теория вероятностей, математическая статистика, численные методы.

Программа разработана экспертным советом Высшей аттестационной комиссии Министерства образования Российской Федерации по управлению, вычислительной технике и информатике при участии МГУ им. М.В. Ломоносова.

1.  Математические основы

Элементы теории функций и функционального анализа. Понятие меры и интеграла Лебега. Метрические и нормированные пространства. Пространства интегрируемых функций. Пространства Соболева. Линейные непрерывные функционалы. Теорема Хана—Банаха. Линейные операторы. Элементы спектральной теории. Дифференциальные и интегральные операторы.

Экстремальные задачи. Выпуклый анализ.  Экстремальные задачи в евклидовых пространствах. Выпуклые задачи на минимум. Математич еское программирование, линейное программирование, выпуклое программирование. Задачи на минимакс. Основы вариационного исчисления. Задачи оптимального управления. Принцип максимума. Принцип динамического программирования.

Теория вероятностей. Математическая статистика.  Аксиоматика теории вероятностей. Вероятность, условная вероятность. Независ имость. Случайные величины и векторы. Элементы корреляционной теории случайных векторов. Элементы теории случайных процессов. Точечное и интервальное оценивание параметров распределения. Элементы теории проверки статистических гипотез. Элементы многомерного статистического анализа. Основные понятия теории статистических решений. Основы теории информации.

2.  Информационные технологии

Принятие решений.  Общая проблема решения. Функция потерь. Бай есовский и минимаксный подходы. Метод последовательного принятия решения.

Исследование операций и задачи искусственного интеллекта. Экспертизы и неформальные процедуры. Автоматизация проектирования. Искусственный интеллект. Распознавание образов.

3.  Компьютерные технологии

Численные методы.  Интерполяция и аппроксимация функци ональных зависимостей. Численное дифференцирование и интегрирование. Численные методы поиска экстремума. Вычислительные методы линейной алгебры. Численные методы решения систем дифференциальных уравнений. Сплайн-аппроксимация, интерполяция, метод конечных элементов. Преобразования Фурье, Лапласа, Хаара и др. Численные методы вейвлет-анализа.

Вычислительный эксперимент.  Принципы проведения в ычислительного эксперимента. Модель, алгоритм, программа.

Алгоритмические языки.  Представление о языках программир ования высокого уровня. Пакеты прикладных программ.

4.  Методы математического моделирования

Основные принципы математического моделирования.  Элеме нтарные математические модели в механике, гидродинамике, электродинамике. Универсальность математических моделей. Методы построения математических моделей на основе фундаментальных законов природы. Вариационные принципы построения математических моделей

Методы исследования математических моделей.  Устойчивость. Пр оверка адекватности математических моделей.

Математические модели в научных исследованиях. Математические модели в статистической механике, экономике, биологии. Методы математического моделирования измерительно-вычислительных систем.

Задачи редукции к идеальному прибору. Синтез выходного сигнала идеального прибора. Проверка адекватности модели измерения и адекватности результатов редукции.

Модели динамических систем. Особые точки. Бифуркации. Динамический хаос. Эргодичность и перемешивание. Понятие о самоорганизации. Диссипативные структуры. Режимы с обострением.

Основная литература

Колмогоров А.Н., Фомин С.В. Функциональный анализ. М.: Наука, 1984.

Васильев Ф.П. Численные методы решения эк стремальных задач. М.: Наука, 1981.

Боровков А.А. Теория вероятностей. М.: Наука, 1984.

Боровков А.А. Математическая статистика. М.: Наука, 1984.

Калиткин Н.Н. Численные методы. М.: Наука, 1978.

Самарский А.А., Михайлов А.П. Математич еское моделирование. М.: Физматлит, 1997.

Математическое моделирование / Под ред. А.Н. Тихонова, В.А. С адовничего и др. М.: Изд-во МГУ, 1993.

Лебедев В.В. Математическое моделирование социально-экономических процессов. М.: ИЗОГРАФ, 1997.

Петров А.А., Поспелов И.Г., Шананин А.А. Опыт математического моделир ования экономики. М.: Энергоатомиздат, 1996.

Пытьев Ю.П. Методы математического моделирования измерител ьно-вычислительных систем. М.: Физматлит, 2002.

Дополнительная литература

Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. М.: Наука, 1979.

Пытьев Ю.П. Математические методы анализа эксперимента. М.: Высш. школа, 1989.

Чуличков А.И. Математические модели нел инейной динамики. М.: Физматлит, 2000.

Демьянов В.Ф., Малоземов В.Н. Введение в м инимакс. М.: Наука, 1972.

Краснощеков П.С., Петров А.А. Принципы п остроения моделей. М.: Изд-во МГУ, 1984.

Вентцель Е.С. Исследование операций. М.: С ов. радио, 1972.

Если вы заметили в тексте ошибку, выделите её и нажмите Ctrl+Enter.

© 2001-2016 Московский физико-технический институт
(государственный университет)

Техподдержка сайта

МФТИ в социальных сетях

soc-vk soc-fb soc-tw soc-li soc-li
Яндекс.Метрика